A model synapse that incorporates the properties of short- and long-term synaptic plasticity
We propose a general computer model of a synapse, which incorporates mechanisms responsible for the realization of both short- and long-term synaptic plasticity—the two forms of experimentally observed plasticity that seem to be very significant for the performance of neuronal networks. The model co...
Gespeichert in:
Veröffentlicht in: | Neural networks 2003-10, Vol.16 (8), p.1161-1177 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1177 |
---|---|
container_issue | 8 |
container_start_page | 1161 |
container_title | Neural networks |
container_volume | 16 |
creator | Sargsyan, Armen R Melkonyan, Albert A Papatheodoropoulos, Costas Mkrtchian, Hovhannes H Kostopoulos, George K |
description | We propose a general computer model of a synapse, which incorporates mechanisms responsible for the realization of both short- and long-term synaptic plasticity—the two forms of experimentally observed plasticity that seem to be very significant for the performance of neuronal networks. The model consists of a presynaptic part based on the earlier ‘double barrier synapse’ model, and a postsynaptic compartment which is connected to the presynaptic terminal via a feedback, the sign and magnitude of which depend on postsynaptic Ca
2+ concentration. The feedback increases or decreases the amount of neurotransmitter which is in a ready for release state. The model adequately reproduced the phenomena of short- and long-term plasticity observed experimentally in hippocampal slices for CA3–CA1 synapses. The proposed model may be used in the investigation of certain real synapses to estimate their physiological parameters, and in the construction of realistic neuronal networks. |
doi_str_mv | 10.1016/S0893-6080(03)00135-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73648606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608003001357</els_id><sourcerecordid>17705041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d6ea6d2fc80f151482b08c899ed6bb75ebfc1524f349b9b1bba7c3a1a64f300c3</originalsourceid><addsrcrecordid>eNqFkMFq3DAQhkVpaLbbPkKDLg3NwenIsiX5VEJo00Igh7S3gpDkcaNgW46kLezbR5tdkmNOwwzf_DN8hHxicM6Aia-3oDpeCVDwBfgZAONtJd-QFVOyq2qp6rdk9Ywck_cp3QOAUA1_R44ZF1KJGlbk7wWdQo8jTdvZLAlpvjOZ-tmFuIRoMqYyQbrEsGDMvrRhoOkuxFxRM_d0DPO_KmOc9gHZO7qMJpXq8_YDORrMmPDjoa7Jnx_ff1_-rK5vrn5dXlxXrmlZrnqBRvT14BQMrGWNqi0op7oOe2GtbNEOjrV1M_Cms51l1hrpuGFGlBGA42tyus8tbz5sMGU9-eRwHM2MYZO05KJRAsSrIJMSWmhYAds96GJIKeKgl-gnE7eagd7510_-9U6uBq6f_Jc7a3JyOLCxE_YvWwfhBfh8AExyZhyimZ1PL1zLapD1LujbnsPi7b_HqJPzODvsfUSXdR_8K688ApgOovo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17705041</pqid></control><display><type>article</type><title>A model synapse that incorporates the properties of short- and long-term synaptic plasticity</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sargsyan, Armen R ; Melkonyan, Albert A ; Papatheodoropoulos, Costas ; Mkrtchian, Hovhannes H ; Kostopoulos, George K</creator><creatorcontrib>Sargsyan, Armen R ; Melkonyan, Albert A ; Papatheodoropoulos, Costas ; Mkrtchian, Hovhannes H ; Kostopoulos, George K</creatorcontrib><description>We propose a general computer model of a synapse, which incorporates mechanisms responsible for the realization of both short- and long-term synaptic plasticity—the two forms of experimentally observed plasticity that seem to be very significant for the performance of neuronal networks. The model consists of a presynaptic part based on the earlier ‘double barrier synapse’ model, and a postsynaptic compartment which is connected to the presynaptic terminal via a feedback, the sign and magnitude of which depend on postsynaptic Ca
2+ concentration. The feedback increases or decreases the amount of neurotransmitter which is in a ready for release state. The model adequately reproduced the phenomena of short- and long-term plasticity observed experimentally in hippocampal slices for CA3–CA1 synapses. The proposed model may be used in the investigation of certain real synapses to estimate their physiological parameters, and in the construction of realistic neuronal networks.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(03)00135-7</identifier><identifier>PMID: 13678620</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer Simulation ; Connectionism. Neural networks ; Exact sciences and technology ; Excitatory Postsynaptic Potentials ; Feedback ; Hippocampus - physiology ; In Vitro Techniques ; Long-Term Potentiation - physiology ; Male ; Models, Neurological ; Neural modelling ; Neurocomputing ; Neuronal Plasticity - physiology ; Neurotransmitter Agents - metabolism ; Rats ; Rats, Wistar ; Synapses - physiology ; Synaptic plasticity ; Synaptic transmission ; Synaptic Transmission - physiology</subject><ispartof>Neural networks, 2003-10, Vol.16 (8), p.1161-1177</ispartof><rights>2003 Elsevier Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d6ea6d2fc80f151482b08c899ed6bb75ebfc1524f349b9b1bba7c3a1a64f300c3</citedby><cites>FETCH-LOGICAL-c451t-d6ea6d2fc80f151482b08c899ed6bb75ebfc1524f349b9b1bba7c3a1a64f300c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0893-6080(03)00135-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15120727$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/13678620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sargsyan, Armen R</creatorcontrib><creatorcontrib>Melkonyan, Albert A</creatorcontrib><creatorcontrib>Papatheodoropoulos, Costas</creatorcontrib><creatorcontrib>Mkrtchian, Hovhannes H</creatorcontrib><creatorcontrib>Kostopoulos, George K</creatorcontrib><title>A model synapse that incorporates the properties of short- and long-term synaptic plasticity</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>We propose a general computer model of a synapse, which incorporates mechanisms responsible for the realization of both short- and long-term synaptic plasticity—the two forms of experimentally observed plasticity that seem to be very significant for the performance of neuronal networks. The model consists of a presynaptic part based on the earlier ‘double barrier synapse’ model, and a postsynaptic compartment which is connected to the presynaptic terminal via a feedback, the sign and magnitude of which depend on postsynaptic Ca
2+ concentration. The feedback increases or decreases the amount of neurotransmitter which is in a ready for release state. The model adequately reproduced the phenomena of short- and long-term plasticity observed experimentally in hippocampal slices for CA3–CA1 synapses. The proposed model may be used in the investigation of certain real synapses to estimate their physiological parameters, and in the construction of realistic neuronal networks.</description><subject>Animals</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Excitatory Postsynaptic Potentials</subject><subject>Feedback</subject><subject>Hippocampus - physiology</subject><subject>In Vitro Techniques</subject><subject>Long-Term Potentiation - physiology</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Neural modelling</subject><subject>Neurocomputing</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Synapses - physiology</subject><subject>Synaptic plasticity</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFq3DAQhkVpaLbbPkKDLg3NwenIsiX5VEJo00Igh7S3gpDkcaNgW46kLezbR5tdkmNOwwzf_DN8hHxicM6Aia-3oDpeCVDwBfgZAONtJd-QFVOyq2qp6rdk9Ywck_cp3QOAUA1_R44ZF1KJGlbk7wWdQo8jTdvZLAlpvjOZ-tmFuIRoMqYyQbrEsGDMvrRhoOkuxFxRM_d0DPO_KmOc9gHZO7qMJpXq8_YDORrMmPDjoa7Jnx_ff1_-rK5vrn5dXlxXrmlZrnqBRvT14BQMrGWNqi0op7oOe2GtbNEOjrV1M_Cms51l1hrpuGFGlBGA42tyus8tbz5sMGU9-eRwHM2MYZO05KJRAsSrIJMSWmhYAds96GJIKeKgl-gnE7eagd7510_-9U6uBq6f_Jc7a3JyOLCxE_YvWwfhBfh8AExyZhyimZ1PL1zLapD1LujbnsPi7b_HqJPzODvsfUSXdR_8K688ApgOovo</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Sargsyan, Armen R</creator><creator>Melkonyan, Albert A</creator><creator>Papatheodoropoulos, Costas</creator><creator>Mkrtchian, Hovhannes H</creator><creator>Kostopoulos, George K</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20031001</creationdate><title>A model synapse that incorporates the properties of short- and long-term synaptic plasticity</title><author>Sargsyan, Armen R ; Melkonyan, Albert A ; Papatheodoropoulos, Costas ; Mkrtchian, Hovhannes H ; Kostopoulos, George K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d6ea6d2fc80f151482b08c899ed6bb75ebfc1524f349b9b1bba7c3a1a64f300c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Excitatory Postsynaptic Potentials</topic><topic>Feedback</topic><topic>Hippocampus - physiology</topic><topic>In Vitro Techniques</topic><topic>Long-Term Potentiation - physiology</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Neural modelling</topic><topic>Neurocomputing</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Synapses - physiology</topic><topic>Synaptic plasticity</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sargsyan, Armen R</creatorcontrib><creatorcontrib>Melkonyan, Albert A</creatorcontrib><creatorcontrib>Papatheodoropoulos, Costas</creatorcontrib><creatorcontrib>Mkrtchian, Hovhannes H</creatorcontrib><creatorcontrib>Kostopoulos, George K</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sargsyan, Armen R</au><au>Melkonyan, Albert A</au><au>Papatheodoropoulos, Costas</au><au>Mkrtchian, Hovhannes H</au><au>Kostopoulos, George K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model synapse that incorporates the properties of short- and long-term synaptic plasticity</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>16</volume><issue>8</issue><spage>1161</spage><epage>1177</epage><pages>1161-1177</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>We propose a general computer model of a synapse, which incorporates mechanisms responsible for the realization of both short- and long-term synaptic plasticity—the two forms of experimentally observed plasticity that seem to be very significant for the performance of neuronal networks. The model consists of a presynaptic part based on the earlier ‘double barrier synapse’ model, and a postsynaptic compartment which is connected to the presynaptic terminal via a feedback, the sign and magnitude of which depend on postsynaptic Ca
2+ concentration. The feedback increases or decreases the amount of neurotransmitter which is in a ready for release state. The model adequately reproduced the phenomena of short- and long-term plasticity observed experimentally in hippocampal slices for CA3–CA1 synapses. The proposed model may be used in the investigation of certain real synapses to estimate their physiological parameters, and in the construction of realistic neuronal networks.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>13678620</pmid><doi>10.1016/S0893-6080(03)00135-7</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2003-10, Vol.16 (8), p.1161-1177 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_73648606 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Applied sciences Artificial intelligence Computer science control theory systems Computer Simulation Connectionism. Neural networks Exact sciences and technology Excitatory Postsynaptic Potentials Feedback Hippocampus - physiology In Vitro Techniques Long-Term Potentiation - physiology Male Models, Neurological Neural modelling Neurocomputing Neuronal Plasticity - physiology Neurotransmitter Agents - metabolism Rats Rats, Wistar Synapses - physiology Synaptic plasticity Synaptic transmission Synaptic Transmission - physiology |
title | A model synapse that incorporates the properties of short- and long-term synaptic plasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model%20synapse%20that%20incorporates%20the%20properties%20of%20short-%20and%20long-term%20synaptic%20plasticity&rft.jtitle=Neural%20networks&rft.au=Sargsyan,%20Armen%20R&rft.date=2003-10-01&rft.volume=16&rft.issue=8&rft.spage=1161&rft.epage=1177&rft.pages=1161-1177&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(03)00135-7&rft_dat=%3Cproquest_cross%3E17705041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17705041&rft_id=info:pmid/13678620&rft_els_id=S0893608003001357&rfr_iscdi=true |