A model synapse that incorporates the properties of short- and long-term synaptic plasticity

We propose a general computer model of a synapse, which incorporates mechanisms responsible for the realization of both short- and long-term synaptic plasticity—the two forms of experimentally observed plasticity that seem to be very significant for the performance of neuronal networks. The model co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2003-10, Vol.16 (8), p.1161-1177
Hauptverfasser: Sargsyan, Armen R, Melkonyan, Albert A, Papatheodoropoulos, Costas, Mkrtchian, Hovhannes H, Kostopoulos, George K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1177
container_issue 8
container_start_page 1161
container_title Neural networks
container_volume 16
creator Sargsyan, Armen R
Melkonyan, Albert A
Papatheodoropoulos, Costas
Mkrtchian, Hovhannes H
Kostopoulos, George K
description We propose a general computer model of a synapse, which incorporates mechanisms responsible for the realization of both short- and long-term synaptic plasticity—the two forms of experimentally observed plasticity that seem to be very significant for the performance of neuronal networks. The model consists of a presynaptic part based on the earlier ‘double barrier synapse’ model, and a postsynaptic compartment which is connected to the presynaptic terminal via a feedback, the sign and magnitude of which depend on postsynaptic Ca 2+ concentration. The feedback increases or decreases the amount of neurotransmitter which is in a ready for release state. The model adequately reproduced the phenomena of short- and long-term plasticity observed experimentally in hippocampal slices for CA3–CA1 synapses. The proposed model may be used in the investigation of certain real synapses to estimate their physiological parameters, and in the construction of realistic neuronal networks.
doi_str_mv 10.1016/S0893-6080(03)00135-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73648606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608003001357</els_id><sourcerecordid>17705041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d6ea6d2fc80f151482b08c899ed6bb75ebfc1524f349b9b1bba7c3a1a64f300c3</originalsourceid><addsrcrecordid>eNqFkMFq3DAQhkVpaLbbPkKDLg3NwenIsiX5VEJo00Igh7S3gpDkcaNgW46kLezbR5tdkmNOwwzf_DN8hHxicM6Aia-3oDpeCVDwBfgZAONtJd-QFVOyq2qp6rdk9Ywck_cp3QOAUA1_R44ZF1KJGlbk7wWdQo8jTdvZLAlpvjOZ-tmFuIRoMqYyQbrEsGDMvrRhoOkuxFxRM_d0DPO_KmOc9gHZO7qMJpXq8_YDORrMmPDjoa7Jnx_ff1_-rK5vrn5dXlxXrmlZrnqBRvT14BQMrGWNqi0op7oOe2GtbNEOjrV1M_Cms51l1hrpuGFGlBGA42tyus8tbz5sMGU9-eRwHM2MYZO05KJRAsSrIJMSWmhYAds96GJIKeKgl-gnE7eagd7510_-9U6uBq6f_Jc7a3JyOLCxE_YvWwfhBfh8AExyZhyimZ1PL1zLapD1LujbnsPi7b_HqJPzODvsfUSXdR_8K688ApgOovo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17705041</pqid></control><display><type>article</type><title>A model synapse that incorporates the properties of short- and long-term synaptic plasticity</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sargsyan, Armen R ; Melkonyan, Albert A ; Papatheodoropoulos, Costas ; Mkrtchian, Hovhannes H ; Kostopoulos, George K</creator><creatorcontrib>Sargsyan, Armen R ; Melkonyan, Albert A ; Papatheodoropoulos, Costas ; Mkrtchian, Hovhannes H ; Kostopoulos, George K</creatorcontrib><description>We propose a general computer model of a synapse, which incorporates mechanisms responsible for the realization of both short- and long-term synaptic plasticity—the two forms of experimentally observed plasticity that seem to be very significant for the performance of neuronal networks. The model consists of a presynaptic part based on the earlier ‘double barrier synapse’ model, and a postsynaptic compartment which is connected to the presynaptic terminal via a feedback, the sign and magnitude of which depend on postsynaptic Ca 2+ concentration. The feedback increases or decreases the amount of neurotransmitter which is in a ready for release state. The model adequately reproduced the phenomena of short- and long-term plasticity observed experimentally in hippocampal slices for CA3–CA1 synapses. The proposed model may be used in the investigation of certain real synapses to estimate their physiological parameters, and in the construction of realistic neuronal networks.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(03)00135-7</identifier><identifier>PMID: 13678620</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer Simulation ; Connectionism. Neural networks ; Exact sciences and technology ; Excitatory Postsynaptic Potentials ; Feedback ; Hippocampus - physiology ; In Vitro Techniques ; Long-Term Potentiation - physiology ; Male ; Models, Neurological ; Neural modelling ; Neurocomputing ; Neuronal Plasticity - physiology ; Neurotransmitter Agents - metabolism ; Rats ; Rats, Wistar ; Synapses - physiology ; Synaptic plasticity ; Synaptic transmission ; Synaptic Transmission - physiology</subject><ispartof>Neural networks, 2003-10, Vol.16 (8), p.1161-1177</ispartof><rights>2003 Elsevier Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d6ea6d2fc80f151482b08c899ed6bb75ebfc1524f349b9b1bba7c3a1a64f300c3</citedby><cites>FETCH-LOGICAL-c451t-d6ea6d2fc80f151482b08c899ed6bb75ebfc1524f349b9b1bba7c3a1a64f300c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0893-6080(03)00135-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15120727$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/13678620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sargsyan, Armen R</creatorcontrib><creatorcontrib>Melkonyan, Albert A</creatorcontrib><creatorcontrib>Papatheodoropoulos, Costas</creatorcontrib><creatorcontrib>Mkrtchian, Hovhannes H</creatorcontrib><creatorcontrib>Kostopoulos, George K</creatorcontrib><title>A model synapse that incorporates the properties of short- and long-term synaptic plasticity</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>We propose a general computer model of a synapse, which incorporates mechanisms responsible for the realization of both short- and long-term synaptic plasticity—the two forms of experimentally observed plasticity that seem to be very significant for the performance of neuronal networks. The model consists of a presynaptic part based on the earlier ‘double barrier synapse’ model, and a postsynaptic compartment which is connected to the presynaptic terminal via a feedback, the sign and magnitude of which depend on postsynaptic Ca 2+ concentration. The feedback increases or decreases the amount of neurotransmitter which is in a ready for release state. The model adequately reproduced the phenomena of short- and long-term plasticity observed experimentally in hippocampal slices for CA3–CA1 synapses. The proposed model may be used in the investigation of certain real synapses to estimate their physiological parameters, and in the construction of realistic neuronal networks.</description><subject>Animals</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Excitatory Postsynaptic Potentials</subject><subject>Feedback</subject><subject>Hippocampus - physiology</subject><subject>In Vitro Techniques</subject><subject>Long-Term Potentiation - physiology</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Neural modelling</subject><subject>Neurocomputing</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Synapses - physiology</subject><subject>Synaptic plasticity</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFq3DAQhkVpaLbbPkKDLg3NwenIsiX5VEJo00Igh7S3gpDkcaNgW46kLezbR5tdkmNOwwzf_DN8hHxicM6Aia-3oDpeCVDwBfgZAONtJd-QFVOyq2qp6rdk9Ywck_cp3QOAUA1_R44ZF1KJGlbk7wWdQo8jTdvZLAlpvjOZ-tmFuIRoMqYyQbrEsGDMvrRhoOkuxFxRM_d0DPO_KmOc9gHZO7qMJpXq8_YDORrMmPDjoa7Jnx_ff1_-rK5vrn5dXlxXrmlZrnqBRvT14BQMrGWNqi0op7oOe2GtbNEOjrV1M_Cms51l1hrpuGFGlBGA42tyus8tbz5sMGU9-eRwHM2MYZO05KJRAsSrIJMSWmhYAds96GJIKeKgl-gnE7eagd7510_-9U6uBq6f_Jc7a3JyOLCxE_YvWwfhBfh8AExyZhyimZ1PL1zLapD1LujbnsPi7b_HqJPzODvsfUSXdR_8K688ApgOovo</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Sargsyan, Armen R</creator><creator>Melkonyan, Albert A</creator><creator>Papatheodoropoulos, Costas</creator><creator>Mkrtchian, Hovhannes H</creator><creator>Kostopoulos, George K</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20031001</creationdate><title>A model synapse that incorporates the properties of short- and long-term synaptic plasticity</title><author>Sargsyan, Armen R ; Melkonyan, Albert A ; Papatheodoropoulos, Costas ; Mkrtchian, Hovhannes H ; Kostopoulos, George K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d6ea6d2fc80f151482b08c899ed6bb75ebfc1524f349b9b1bba7c3a1a64f300c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Excitatory Postsynaptic Potentials</topic><topic>Feedback</topic><topic>Hippocampus - physiology</topic><topic>In Vitro Techniques</topic><topic>Long-Term Potentiation - physiology</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Neural modelling</topic><topic>Neurocomputing</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Synapses - physiology</topic><topic>Synaptic plasticity</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sargsyan, Armen R</creatorcontrib><creatorcontrib>Melkonyan, Albert A</creatorcontrib><creatorcontrib>Papatheodoropoulos, Costas</creatorcontrib><creatorcontrib>Mkrtchian, Hovhannes H</creatorcontrib><creatorcontrib>Kostopoulos, George K</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sargsyan, Armen R</au><au>Melkonyan, Albert A</au><au>Papatheodoropoulos, Costas</au><au>Mkrtchian, Hovhannes H</au><au>Kostopoulos, George K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model synapse that incorporates the properties of short- and long-term synaptic plasticity</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>16</volume><issue>8</issue><spage>1161</spage><epage>1177</epage><pages>1161-1177</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>We propose a general computer model of a synapse, which incorporates mechanisms responsible for the realization of both short- and long-term synaptic plasticity—the two forms of experimentally observed plasticity that seem to be very significant for the performance of neuronal networks. The model consists of a presynaptic part based on the earlier ‘double barrier synapse’ model, and a postsynaptic compartment which is connected to the presynaptic terminal via a feedback, the sign and magnitude of which depend on postsynaptic Ca 2+ concentration. The feedback increases or decreases the amount of neurotransmitter which is in a ready for release state. The model adequately reproduced the phenomena of short- and long-term plasticity observed experimentally in hippocampal slices for CA3–CA1 synapses. The proposed model may be used in the investigation of certain real synapses to estimate their physiological parameters, and in the construction of realistic neuronal networks.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>13678620</pmid><doi>10.1016/S0893-6080(03)00135-7</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2003-10, Vol.16 (8), p.1161-1177
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_73648606
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Computer Simulation
Connectionism. Neural networks
Exact sciences and technology
Excitatory Postsynaptic Potentials
Feedback
Hippocampus - physiology
In Vitro Techniques
Long-Term Potentiation - physiology
Male
Models, Neurological
Neural modelling
Neurocomputing
Neuronal Plasticity - physiology
Neurotransmitter Agents - metabolism
Rats
Rats, Wistar
Synapses - physiology
Synaptic plasticity
Synaptic transmission
Synaptic Transmission - physiology
title A model synapse that incorporates the properties of short- and long-term synaptic plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model%20synapse%20that%20incorporates%20the%20properties%20of%20short-%20and%20long-term%20synaptic%20plasticity&rft.jtitle=Neural%20networks&rft.au=Sargsyan,%20Armen%20R&rft.date=2003-10-01&rft.volume=16&rft.issue=8&rft.spage=1161&rft.epage=1177&rft.pages=1161-1177&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(03)00135-7&rft_dat=%3Cproquest_cross%3E17705041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17705041&rft_id=info:pmid/13678620&rft_els_id=S0893608003001357&rfr_iscdi=true