Uptake and distribution of sinigrin in microspore derived embryos of Brassica napus L

In Brassica napus, glucosinolates are transported from all parts of the plant into the embryo during seed development. In this study we describe the uptake of the alkenyl glucosinolate sinigrin by microspore derived embryos from high and low glucosinolate genotypes. Microspore derived embryos develo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology 2003-08, Vol.160 (8), p.961-966
Hauptverfasser: Cassim Mohamed Iqbal, M., Möllers, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 966
container_issue 8
container_start_page 961
container_title Journal of plant physiology
container_volume 160
creator Cassim Mohamed Iqbal, M.
Möllers, Christian
description In Brassica napus, glucosinolates are transported from all parts of the plant into the embryo during seed development. In this study we describe the uptake of the alkenyl glucosinolate sinigrin by microspore derived embryos from high and low glucosinolate genotypes. Microspore derived embryos develop completely isolated from maternal tissues unlike zygotic embryos, which contains glucosinolates transported into the embryo synthesised in the vegetative tissues. The sinigrin in the culture medium was almost completely absorbed by the embryos after three days of culture. The embryos of high and low glucosinolate genotypes were equally capable of absorbing sinigrin from the medium. A significant increase in different alkenyl glucosinolates following feeding of sinigrin suggests induction of biosynthetic enzymes in the embryos. Following excess feeding of sinigrin, we found a strong uptake against a concentration gradient and stable accumulation by the embryos. The glucosinolate was detected in single dissected cotyledons by a photometric test and by HPLC. This test could potentially be useful for screening mutants defective in glucosinolate uptake into the embryo.
doi_str_mv 10.1078/0176-1617-00527
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73636155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0176161704704812</els_id><sourcerecordid>430547341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-d1872e840ade9d737369dc5df08831260d3615d2d1fd55348b92e39168d9bed83</originalsourceid><addsrcrecordid>eNp1kE2L1TAUhoMoznV07U6DoLs6-WjaZKmDX3DBhd51SJNTyXib1Jx2YP69qffigCAEwiFPXt7zEPKcs7ec9fqK8b5reMf7hjEl-gdkVwfdcCn0Q7L7-3pBniDesDorLR-TCy5M1-pe7MjhMC_uJ1CXAg0RlxKHdYk50TxSjCn-KDHReqboS8Y5F6ABSryFQGEayl3GjXxfHGL0jiY3r0j3T8mj0R0Rnp3vS3L4-OH79edm__XTl-t3-8a3ol2awGsH0C1zAUzoZS87E7wKI9NactGxIDuuggh8DErJVg9GgDS808EMELS8JG9OuXPJv1bAxU4RPRyPLkFe0dbALUFV8NU_4E1eS6rdrGCd1qxvt7SrE7StigVGO5c4uXJnObObbrsJtZtQ-0d3_fHiHLsOE4R7_uy3Aq_PgEPvjmNxyUe851TNaZWp3MsTN7psXZWO9vBNMC4ZZ8Jw1lbCnAioPm8jFIs-QvIQYgG_2JDjf2v-BjkdoXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206880748</pqid></control><display><type>article</type><title>Uptake and distribution of sinigrin in microspore derived embryos of Brassica napus L</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Cassim Mohamed Iqbal, M. ; Möllers, Christian</creator><creatorcontrib>Cassim Mohamed Iqbal, M. ; Möllers, Christian</creatorcontrib><description>In Brassica napus, glucosinolates are transported from all parts of the plant into the embryo during seed development. In this study we describe the uptake of the alkenyl glucosinolate sinigrin by microspore derived embryos from high and low glucosinolate genotypes. Microspore derived embryos develop completely isolated from maternal tissues unlike zygotic embryos, which contains glucosinolates transported into the embryo synthesised in the vegetative tissues. The sinigrin in the culture medium was almost completely absorbed by the embryos after three days of culture. The embryos of high and low glucosinolate genotypes were equally capable of absorbing sinigrin from the medium. A significant increase in different alkenyl glucosinolates following feeding of sinigrin suggests induction of biosynthetic enzymes in the embryos. Following excess feeding of sinigrin, we found a strong uptake against a concentration gradient and stable accumulation by the embryos. The glucosinolate was detected in single dissected cotyledons by a photometric test and by HPLC. This test could potentially be useful for screening mutants defective in glucosinolate uptake into the embryo.</description><identifier>ISSN: 0176-1617</identifier><identifier>EISSN: 1618-1328</identifier><identifier>DOI: 10.1078/0176-1617-00527</identifier><identifier>PMID: 12964872</identifier><identifier>CODEN: JPPHEY</identifier><language>eng</language><publisher>Jena: Elsevier GmbH</publisher><subject>Biological and medical sciences ; Biological Transport ; Brassica napus ; Brassica napus - physiology ; Cell physiology ; Cotyledon - physiology ; cotyledons ; culture media ; embryo (plant) ; Fundamental and applied biological sciences. Psychology ; glucosinolate uptake ; glucosinolates ; Glucosinolates - pharmacokinetics ; Hypocotyl - physiology ; hypocotyls ; microspore derived embryos ; microspores ; mustard greens ; photometers ; Plant physiology and development ; Plasma membrane and permeation ; secondary metabolites ; Seeds - physiology ; sinigrin ; Spores - physiology ; Tissue Distribution ; uptake mechanisms ; vegetable crops</subject><ispartof>Journal of plant physiology, 2003-08, Vol.160 (8), p.961-966</ispartof><rights>2003 Urban &amp; Fischer Verlag</rights><rights>2003 INIST-CNRS</rights><rights>Copyright Urban &amp; Fischer Verlag Aug 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-d1872e840ade9d737369dc5df08831260d3615d2d1fd55348b92e39168d9bed83</citedby><cites>FETCH-LOGICAL-c424t-d1872e840ade9d737369dc5df08831260d3615d2d1fd55348b92e39168d9bed83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/206880748?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994,64384,64386,64388,72340</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15005459$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12964872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cassim Mohamed Iqbal, M.</creatorcontrib><creatorcontrib>Möllers, Christian</creatorcontrib><title>Uptake and distribution of sinigrin in microspore derived embryos of Brassica napus L</title><title>Journal of plant physiology</title><addtitle>J Plant Physiol</addtitle><description>In Brassica napus, glucosinolates are transported from all parts of the plant into the embryo during seed development. In this study we describe the uptake of the alkenyl glucosinolate sinigrin by microspore derived embryos from high and low glucosinolate genotypes. Microspore derived embryos develop completely isolated from maternal tissues unlike zygotic embryos, which contains glucosinolates transported into the embryo synthesised in the vegetative tissues. The sinigrin in the culture medium was almost completely absorbed by the embryos after three days of culture. The embryos of high and low glucosinolate genotypes were equally capable of absorbing sinigrin from the medium. A significant increase in different alkenyl glucosinolates following feeding of sinigrin suggests induction of biosynthetic enzymes in the embryos. Following excess feeding of sinigrin, we found a strong uptake against a concentration gradient and stable accumulation by the embryos. The glucosinolate was detected in single dissected cotyledons by a photometric test and by HPLC. This test could potentially be useful for screening mutants defective in glucosinolate uptake into the embryo.</description><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>Brassica napus</subject><subject>Brassica napus - physiology</subject><subject>Cell physiology</subject><subject>Cotyledon - physiology</subject><subject>cotyledons</subject><subject>culture media</subject><subject>embryo (plant)</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>glucosinolate uptake</subject><subject>glucosinolates</subject><subject>Glucosinolates - pharmacokinetics</subject><subject>Hypocotyl - physiology</subject><subject>hypocotyls</subject><subject>microspore derived embryos</subject><subject>microspores</subject><subject>mustard greens</subject><subject>photometers</subject><subject>Plant physiology and development</subject><subject>Plasma membrane and permeation</subject><subject>secondary metabolites</subject><subject>Seeds - physiology</subject><subject>sinigrin</subject><subject>Spores - physiology</subject><subject>Tissue Distribution</subject><subject>uptake mechanisms</subject><subject>vegetable crops</subject><issn>0176-1617</issn><issn>1618-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE2L1TAUhoMoznV07U6DoLs6-WjaZKmDX3DBhd51SJNTyXib1Jx2YP69qffigCAEwiFPXt7zEPKcs7ec9fqK8b5reMf7hjEl-gdkVwfdcCn0Q7L7-3pBniDesDorLR-TCy5M1-pe7MjhMC_uJ1CXAg0RlxKHdYk50TxSjCn-KDHReqboS8Y5F6ABSryFQGEayl3GjXxfHGL0jiY3r0j3T8mj0R0Rnp3vS3L4-OH79edm__XTl-t3-8a3ol2awGsH0C1zAUzoZS87E7wKI9NactGxIDuuggh8DErJVg9GgDS808EMELS8JG9OuXPJv1bAxU4RPRyPLkFe0dbALUFV8NU_4E1eS6rdrGCd1qxvt7SrE7StigVGO5c4uXJnObObbrsJtZtQ-0d3_fHiHLsOE4R7_uy3Aq_PgEPvjmNxyUe851TNaZWp3MsTN7psXZWO9vBNMC4ZZ8Jw1lbCnAioPm8jFIs-QvIQYgG_2JDjf2v-BjkdoXk</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Cassim Mohamed Iqbal, M.</creator><creator>Möllers, Christian</creator><general>Elsevier GmbH</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7SS</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>20030801</creationdate><title>Uptake and distribution of sinigrin in microspore derived embryos of Brassica napus L</title><author>Cassim Mohamed Iqbal, M. ; Möllers, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-d1872e840ade9d737369dc5df08831260d3615d2d1fd55348b92e39168d9bed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>Brassica napus</topic><topic>Brassica napus - physiology</topic><topic>Cell physiology</topic><topic>Cotyledon - physiology</topic><topic>cotyledons</topic><topic>culture media</topic><topic>embryo (plant)</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>glucosinolate uptake</topic><topic>glucosinolates</topic><topic>Glucosinolates - pharmacokinetics</topic><topic>Hypocotyl - physiology</topic><topic>hypocotyls</topic><topic>microspore derived embryos</topic><topic>microspores</topic><topic>mustard greens</topic><topic>photometers</topic><topic>Plant physiology and development</topic><topic>Plasma membrane and permeation</topic><topic>secondary metabolites</topic><topic>Seeds - physiology</topic><topic>sinigrin</topic><topic>Spores - physiology</topic><topic>Tissue Distribution</topic><topic>uptake mechanisms</topic><topic>vegetable crops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cassim Mohamed Iqbal, M.</creatorcontrib><creatorcontrib>Möllers, Christian</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of plant physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cassim Mohamed Iqbal, M.</au><au>Möllers, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uptake and distribution of sinigrin in microspore derived embryos of Brassica napus L</atitle><jtitle>Journal of plant physiology</jtitle><addtitle>J Plant Physiol</addtitle><date>2003-08-01</date><risdate>2003</risdate><volume>160</volume><issue>8</issue><spage>961</spage><epage>966</epage><pages>961-966</pages><issn>0176-1617</issn><eissn>1618-1328</eissn><coden>JPPHEY</coden><abstract>In Brassica napus, glucosinolates are transported from all parts of the plant into the embryo during seed development. In this study we describe the uptake of the alkenyl glucosinolate sinigrin by microspore derived embryos from high and low glucosinolate genotypes. Microspore derived embryos develop completely isolated from maternal tissues unlike zygotic embryos, which contains glucosinolates transported into the embryo synthesised in the vegetative tissues. The sinigrin in the culture medium was almost completely absorbed by the embryos after three days of culture. The embryos of high and low glucosinolate genotypes were equally capable of absorbing sinigrin from the medium. A significant increase in different alkenyl glucosinolates following feeding of sinigrin suggests induction of biosynthetic enzymes in the embryos. Following excess feeding of sinigrin, we found a strong uptake against a concentration gradient and stable accumulation by the embryos. The glucosinolate was detected in single dissected cotyledons by a photometric test and by HPLC. This test could potentially be useful for screening mutants defective in glucosinolate uptake into the embryo.</abstract><cop>Jena</cop><pub>Elsevier GmbH</pub><pmid>12964872</pmid><doi>10.1078/0176-1617-00527</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0176-1617
ispartof Journal of plant physiology, 2003-08, Vol.160 (8), p.961-966
issn 0176-1617
1618-1328
language eng
recordid cdi_proquest_miscellaneous_73636155
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Biological and medical sciences
Biological Transport
Brassica napus
Brassica napus - physiology
Cell physiology
Cotyledon - physiology
cotyledons
culture media
embryo (plant)
Fundamental and applied biological sciences. Psychology
glucosinolate uptake
glucosinolates
Glucosinolates - pharmacokinetics
Hypocotyl - physiology
hypocotyls
microspore derived embryos
microspores
mustard greens
photometers
Plant physiology and development
Plasma membrane and permeation
secondary metabolites
Seeds - physiology
sinigrin
Spores - physiology
Tissue Distribution
uptake mechanisms
vegetable crops
title Uptake and distribution of sinigrin in microspore derived embryos of Brassica napus L
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uptake%20and%20distribution%20of%20sinigrin%20in%20microspore%20derived%20embryos%20of%20Brassica%20napus%20L&rft.jtitle=Journal%20of%20plant%20physiology&rft.au=Cassim%20Mohamed%20Iqbal,%20M.&rft.date=2003-08-01&rft.volume=160&rft.issue=8&rft.spage=961&rft.epage=966&rft.pages=961-966&rft.issn=0176-1617&rft.eissn=1618-1328&rft.coden=JPPHEY&rft_id=info:doi/10.1078/0176-1617-00527&rft_dat=%3Cproquest_cross%3E430547341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206880748&rft_id=info:pmid/12964872&rft_els_id=S0176161704704812&rfr_iscdi=true