Characterization of a mosaic minisatellite locus in the mitochondrial DNA of Norway spruce [Picea abies (L.) Karst.]

A mosaic minisatellite region has been identified in the mitochondrial genome of Norway spruce (Picea abies). The array was composed of three tandem repeats PaTR1 (32 bp), PaTR2a (26 bp) and PaTR2b (26 bp). PaTR2a and PaTR2b differed by one base substitution. The analysis of 92 trees covering the wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2003-08, Vol.107 (3), p.574-580
Hauptverfasser: BASTIEN, D, FAVRE, J. M, COLLIGNON, A. M, SPERISEN, C, JEANDROZ, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 580
container_issue 3
container_start_page 574
container_title Theoretical and applied genetics
container_volume 107
creator BASTIEN, D
FAVRE, J. M
COLLIGNON, A. M
SPERISEN, C
JEANDROZ, S
description A mosaic minisatellite region has been identified in the mitochondrial genome of Norway spruce (Picea abies). The array was composed of three tandem repeats PaTR1 (32 bp), PaTR2a (26 bp) and PaTR2b (26 bp). PaTR2a and PaTR2b differed by one base substitution. The analysis of 92 trees covering the whole natural distribution area of the species allowed detection of 11 length variants ranging from 131 bp to 447 bp. This high intra-specific polymorphism relies on variation in the number of the tandem repeats. Population genetic parameters estimated among 14 populations suggested high population differentiation (Gst = 0.749). The phylogenetic analysis of the 11 sequenced length variants has been performed using a parsimony approach. The topology of the tree showed a good association of groups with geographical origin and a low level of size homoplasy. The phylogenetic reconstruction also suggests that this minisatellite locus has mainly evolved by an increase in the repeat copy number.
doi_str_mv 10.1007/s00122-003-1284-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73616466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220662101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-c82d1d6108c02a459ede6fd80c489142e5382ebac3081b2c31fb1571b386ac6e3</originalsourceid><addsrcrecordid>eNqF0U2LFDEQBuBGFHdc_QFeNAiKHnqsVJJO5riMnzisgu5JJFSn006Wns6YdCPrrzfDDCx48ZRDPW-F4q2qxxyWHEC_zgAcsQYQNUcja7xTLbgUWCNKvFstACTUSis8qx7kfA0AqEDcr844agVa46Ka1ltK5Cafwh-aQhxZ7BmxXcwUHNuFMWSa_DCEybMhujmzMLJp68toim4bxy4FGtiby4tD8DKm33TD8j7NzrPvX4LzxKgNPrOXm-Ur9olSnpY_Hlb3ehqyf3R6z6urd2-_rT_Um8_vP64vNrWTWk21M9jxruFgHCBJtfKdb_rOgJNmxSV6JQz6lpwAw1t0gvctV5q3wjTkGi_OqxfHvfsUf80-T3YXsivX0OjjnK0WDW9k0_wXcmNE00hV4LN_4HWc01iOsAZhhVooUxA_Ipdizsn3dp_CjtKN5WAPxdljcbYUZw_FWSyZJ6fFc7vz3W3i1FQBz0-AsqOhTzS6kG-dKl1rrYt7enQ9RUs_UzFXXxF4U76UqGEl_gLkHKfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>820927358</pqid></control><display><type>article</type><title>Characterization of a mosaic minisatellite locus in the mitochondrial DNA of Norway spruce [Picea abies (L.) Karst.]</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>BASTIEN, D ; FAVRE, J. M ; COLLIGNON, A. M ; SPERISEN, C ; JEANDROZ, S</creator><creatorcontrib>BASTIEN, D ; FAVRE, J. M ; COLLIGNON, A. M ; SPERISEN, C ; JEANDROZ, S</creatorcontrib><description>A mosaic minisatellite region has been identified in the mitochondrial genome of Norway spruce (Picea abies). The array was composed of three tandem repeats PaTR1 (32 bp), PaTR2a (26 bp) and PaTR2b (26 bp). PaTR2a and PaTR2b differed by one base substitution. The analysis of 92 trees covering the whole natural distribution area of the species allowed detection of 11 length variants ranging from 131 bp to 447 bp. This high intra-specific polymorphism relies on variation in the number of the tandem repeats. Population genetic parameters estimated among 14 populations suggested high population differentiation (Gst = 0.749). The phylogenetic analysis of the 11 sequenced length variants has been performed using a parsimony approach. The topology of the tree showed a good association of groups with geographical origin and a low level of size homoplasy. The phylogenetic reconstruction also suggests that this minisatellite locus has mainly evolved by an increase in the repeat copy number.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-003-1284-2</identifier><identifier>PMID: 12750772</identifier><identifier>CODEN: THAGA6</identifier><language>eng</language><publisher>Heidelberg: Springer-Verlag</publisher><subject>Base Sequence ; Biological and medical sciences ; DNA Primers ; DNA, Mitochondrial - genetics ; Electrophoresis, Agar Gel ; Fundamental and applied biological sciences. Psychology ; Genetics ; Genetics, Population ; Genomics ; Geography ; Minisatellite Repeats - genetics ; Mitochondrial DNA ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Mutagenesis. Repair ; Phylogeny ; Picea - genetics ; Sequence Analysis, DNA</subject><ispartof>Theoretical and applied genetics, 2003-08, Vol.107 (3), p.574-580</ispartof><rights>2003 INIST-CNRS</rights><rights>Springer-Verlag 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-c82d1d6108c02a459ede6fd80c489142e5382ebac3081b2c31fb1571b386ac6e3</citedby><cites>FETCH-LOGICAL-c475t-c82d1d6108c02a459ede6fd80c489142e5382ebac3081b2c31fb1571b386ac6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15040777$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12750772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BASTIEN, D</creatorcontrib><creatorcontrib>FAVRE, J. M</creatorcontrib><creatorcontrib>COLLIGNON, A. M</creatorcontrib><creatorcontrib>SPERISEN, C</creatorcontrib><creatorcontrib>JEANDROZ, S</creatorcontrib><title>Characterization of a mosaic minisatellite locus in the mitochondrial DNA of Norway spruce [Picea abies (L.) Karst.]</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><description>A mosaic minisatellite region has been identified in the mitochondrial genome of Norway spruce (Picea abies). The array was composed of three tandem repeats PaTR1 (32 bp), PaTR2a (26 bp) and PaTR2b (26 bp). PaTR2a and PaTR2b differed by one base substitution. The analysis of 92 trees covering the whole natural distribution area of the species allowed detection of 11 length variants ranging from 131 bp to 447 bp. This high intra-specific polymorphism relies on variation in the number of the tandem repeats. Population genetic parameters estimated among 14 populations suggested high population differentiation (Gst = 0.749). The phylogenetic analysis of the 11 sequenced length variants has been performed using a parsimony approach. The topology of the tree showed a good association of groups with geographical origin and a low level of size homoplasy. The phylogenetic reconstruction also suggests that this minisatellite locus has mainly evolved by an increase in the repeat copy number.</description><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>DNA Primers</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Electrophoresis, Agar Gel</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics</subject><subject>Genetics, Population</subject><subject>Genomics</subject><subject>Geography</subject><subject>Minisatellite Repeats - genetics</subject><subject>Mitochondrial DNA</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis. Repair</subject><subject>Phylogeny</subject><subject>Picea - genetics</subject><subject>Sequence Analysis, DNA</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U2LFDEQBuBGFHdc_QFeNAiKHnqsVJJO5riMnzisgu5JJFSn006Wns6YdCPrrzfDDCx48ZRDPW-F4q2qxxyWHEC_zgAcsQYQNUcja7xTLbgUWCNKvFstACTUSis8qx7kfA0AqEDcr844agVa46Ka1ltK5Cafwh-aQhxZ7BmxXcwUHNuFMWSa_DCEybMhujmzMLJp68toim4bxy4FGtiby4tD8DKm33TD8j7NzrPvX4LzxKgNPrOXm-Ur9olSnpY_Hlb3ehqyf3R6z6urd2-_rT_Um8_vP64vNrWTWk21M9jxruFgHCBJtfKdb_rOgJNmxSV6JQz6lpwAw1t0gvctV5q3wjTkGi_OqxfHvfsUf80-T3YXsivX0OjjnK0WDW9k0_wXcmNE00hV4LN_4HWc01iOsAZhhVooUxA_Ipdizsn3dp_CjtKN5WAPxdljcbYUZw_FWSyZJ6fFc7vz3W3i1FQBz0-AsqOhTzS6kG-dKl1rrYt7enQ9RUs_UzFXXxF4U76UqGEl_gLkHKfo</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>BASTIEN, D</creator><creator>FAVRE, J. M</creator><creator>COLLIGNON, A. M</creator><creator>SPERISEN, C</creator><creator>JEANDROZ, S</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20030801</creationdate><title>Characterization of a mosaic minisatellite locus in the mitochondrial DNA of Norway spruce [Picea abies (L.) Karst.]</title><author>BASTIEN, D ; FAVRE, J. M ; COLLIGNON, A. M ; SPERISEN, C ; JEANDROZ, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-c82d1d6108c02a459ede6fd80c489142e5382ebac3081b2c31fb1571b386ac6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>DNA Primers</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Electrophoresis, Agar Gel</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics</topic><topic>Genetics, Population</topic><topic>Genomics</topic><topic>Geography</topic><topic>Minisatellite Repeats - genetics</topic><topic>Mitochondrial DNA</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis. Repair</topic><topic>Phylogeny</topic><topic>Picea - genetics</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BASTIEN, D</creatorcontrib><creatorcontrib>FAVRE, J. M</creatorcontrib><creatorcontrib>COLLIGNON, A. M</creatorcontrib><creatorcontrib>SPERISEN, C</creatorcontrib><creatorcontrib>JEANDROZ, S</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BASTIEN, D</au><au>FAVRE, J. M</au><au>COLLIGNON, A. M</au><au>SPERISEN, C</au><au>JEANDROZ, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of a mosaic minisatellite locus in the mitochondrial DNA of Norway spruce [Picea abies (L.) Karst.]</atitle><jtitle>Theoretical and applied genetics</jtitle><addtitle>Theor Appl Genet</addtitle><date>2003-08-01</date><risdate>2003</risdate><volume>107</volume><issue>3</issue><spage>574</spage><epage>580</epage><pages>574-580</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><coden>THAGA6</coden><abstract>A mosaic minisatellite region has been identified in the mitochondrial genome of Norway spruce (Picea abies). The array was composed of three tandem repeats PaTR1 (32 bp), PaTR2a (26 bp) and PaTR2b (26 bp). PaTR2a and PaTR2b differed by one base substitution. The analysis of 92 trees covering the whole natural distribution area of the species allowed detection of 11 length variants ranging from 131 bp to 447 bp. This high intra-specific polymorphism relies on variation in the number of the tandem repeats. Population genetic parameters estimated among 14 populations suggested high population differentiation (Gst = 0.749). The phylogenetic analysis of the 11 sequenced length variants has been performed using a parsimony approach. The topology of the tree showed a good association of groups with geographical origin and a low level of size homoplasy. The phylogenetic reconstruction also suggests that this minisatellite locus has mainly evolved by an increase in the repeat copy number.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><pub>Springer-Verlag</pub><pmid>12750772</pmid><doi>10.1007/s00122-003-1284-2</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2003-08, Vol.107 (3), p.574-580
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_73616466
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Base Sequence
Biological and medical sciences
DNA Primers
DNA, Mitochondrial - genetics
Electrophoresis, Agar Gel
Fundamental and applied biological sciences. Psychology
Genetics
Genetics, Population
Genomics
Geography
Minisatellite Repeats - genetics
Mitochondrial DNA
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
Mutagenesis. Repair
Phylogeny
Picea - genetics
Sequence Analysis, DNA
title Characterization of a mosaic minisatellite locus in the mitochondrial DNA of Norway spruce [Picea abies (L.) Karst.]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20a%20mosaic%20minisatellite%20locus%20in%20the%20mitochondrial%20DNA%20of%20Norway%20spruce%20%5BPicea%20abies%20(L.)%20Karst.%5D&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=BASTIEN,%20D&rft.date=2003-08-01&rft.volume=107&rft.issue=3&rft.spage=574&rft.epage=580&rft.pages=574-580&rft.issn=0040-5752&rft.eissn=1432-2242&rft.coden=THAGA6&rft_id=info:doi/10.1007/s00122-003-1284-2&rft_dat=%3Cproquest_cross%3E2220662101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=820927358&rft_id=info:pmid/12750772&rfr_iscdi=true