Electron, Hydride, and Fluoride Affinities of Silicon-Containing Species:  Computational Studies

The distance dependence of silicon substitution on the electron affinity (EA) of carbon radicals has been studied using computational methods in SiH3(CH2) n CH2 (A) and SiH2F(CH2) n CH2 (B). Large EAs result when n = 0 for both A and B. The result for A is compared with the experimental EA value of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2003-09, Vol.125 (35), p.10759-10766
Hauptverfasser: Damrauer, Robert, Crowell, April J, Craig, Colleen F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10766
container_issue 35
container_start_page 10759
container_title Journal of the American Chemical Society
container_volume 125
creator Damrauer, Robert
Crowell, April J
Craig, Colleen F
description The distance dependence of silicon substitution on the electron affinity (EA) of carbon radicals has been studied using computational methods in SiH3(CH2) n CH2 (A) and SiH2F(CH2) n CH2 (B). Large EAs result when n = 0 for both A and B. The result for A is compared with the experimental EA value of (CH3)3SiCH2. Similar comparisons with known EAs (CH3 and SiH3) establish the validity of the computational approach. Fluorine substitution in SiH2FCH2 is consistent with other fluorine substitution effects. When n > 1, the anions of both A and B cyclize to pentacoordinate structures in which silicon has trigonal bipyramidal geometry. The corresponding EA values raise important questions about computed EAs that result from profound geometry changes between radicals and anions. Anions that have not cyclized give rise to EA values more easily interpreted. Such results, combined with computations of vertical attachment energies, indicate that the EA values of A and B attenuate rapidly for n > 1, quickly approaching that of CH3. Pentacoordination effects of silicon anions were also studied for SiH4, (CH3)2SiH2, 1-silacyclopropane, 1-silacyclobutane, and 1-silacyclopentane.
doi_str_mv 10.1021/ja0301875
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73609741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73609741</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-45c382d818ea91bc587a2fb1e4238bf8a1bd17ef770bebaa390ef6f24ab5775e3</originalsourceid><addsrcrecordid>eNptkM1uEzEUhS0EoqGw4AWQNyAhdYp_xuMZdiW0tFIFkRI2bKxrj40cJnawPRLdseU1-ySdKFGzYXV17vl07tVB6DUl55Qw-mENhBPaSvEEzahgpBKUNU_RjBDCKtk2_AS9yHk9yZq19Dk6oayriWzYDOnLwZqSYjjD13d98r09wxB6fDWMcafwhXM--OJtxtHhpR-8iaGax1Bg2oefeLm1ZnI_3v_9h-dxsx0LFB8DDHhZxn5yXqJnDoZsXx3mKfp-dbmaX1e3377czC9uK-CyK1UtDG9Z39LWQke1Ea0E5jS1NeOtdi1Q3VNpnZREWw3AO2Jd41gNWkgpLD9F7_a52xR_jzYXtfHZ2GGAYOOYleQN6WRNJ_D9HjQp5pysU9vkN5DuFCVqV6h6LHRi3xxCR72x_ZE8NDgBbw8AZAODSxCMz0dOkI5Ktjta7Tmfi_3z6EP6pRrJpVCrxVLJ1eLzovn6Q3065oLJah3HNDWa__PgA6TumXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73609741</pqid></control><display><type>article</type><title>Electron, Hydride, and Fluoride Affinities of Silicon-Containing Species:  Computational Studies</title><source>ACS Journals</source><creator>Damrauer, Robert ; Crowell, April J ; Craig, Colleen F</creator><creatorcontrib>Damrauer, Robert ; Crowell, April J ; Craig, Colleen F</creatorcontrib><description>The distance dependence of silicon substitution on the electron affinity (EA) of carbon radicals has been studied using computational methods in SiH3(CH2) n CH2 (A) and SiH2F(CH2) n CH2 (B). Large EAs result when n = 0 for both A and B. The result for A is compared with the experimental EA value of (CH3)3SiCH2. Similar comparisons with known EAs (CH3 and SiH3) establish the validity of the computational approach. Fluorine substitution in SiH2FCH2 is consistent with other fluorine substitution effects. When n &gt; 1, the anions of both A and B cyclize to pentacoordinate structures in which silicon has trigonal bipyramidal geometry. The corresponding EA values raise important questions about computed EAs that result from profound geometry changes between radicals and anions. Anions that have not cyclized give rise to EA values more easily interpreted. Such results, combined with computations of vertical attachment energies, indicate that the EA values of A and B attenuate rapidly for n &gt; 1, quickly approaching that of CH3. Pentacoordination effects of silicon anions were also studied for SiH4, (CH3)2SiH2, 1-silacyclopropane, 1-silacyclobutane, and 1-silacyclopentane.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja0301875</identifier><identifier>PMID: 12940762</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Atomic and molecular physics ; Exact sciences and technology ; Ionization potentials, electron affinities, molecular core binding energy ; Molecular properties and interactions with photons ; Physics ; Properties of molecules and molecular ions</subject><ispartof>Journal of the American Chemical Society, 2003-09, Vol.125 (35), p.10759-10766</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-45c382d818ea91bc587a2fb1e4238bf8a1bd17ef770bebaa390ef6f24ab5775e3</citedby><cites>FETCH-LOGICAL-a379t-45c382d818ea91bc587a2fb1e4238bf8a1bd17ef770bebaa390ef6f24ab5775e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja0301875$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja0301875$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15091721$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12940762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Damrauer, Robert</creatorcontrib><creatorcontrib>Crowell, April J</creatorcontrib><creatorcontrib>Craig, Colleen F</creatorcontrib><title>Electron, Hydride, and Fluoride Affinities of Silicon-Containing Species:  Computational Studies</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The distance dependence of silicon substitution on the electron affinity (EA) of carbon radicals has been studied using computational methods in SiH3(CH2) n CH2 (A) and SiH2F(CH2) n CH2 (B). Large EAs result when n = 0 for both A and B. The result for A is compared with the experimental EA value of (CH3)3SiCH2. Similar comparisons with known EAs (CH3 and SiH3) establish the validity of the computational approach. Fluorine substitution in SiH2FCH2 is consistent with other fluorine substitution effects. When n &gt; 1, the anions of both A and B cyclize to pentacoordinate structures in which silicon has trigonal bipyramidal geometry. The corresponding EA values raise important questions about computed EAs that result from profound geometry changes between radicals and anions. Anions that have not cyclized give rise to EA values more easily interpreted. Such results, combined with computations of vertical attachment energies, indicate that the EA values of A and B attenuate rapidly for n &gt; 1, quickly approaching that of CH3. Pentacoordination effects of silicon anions were also studied for SiH4, (CH3)2SiH2, 1-silacyclopropane, 1-silacyclobutane, and 1-silacyclopentane.</description><subject>Atomic and molecular physics</subject><subject>Exact sciences and technology</subject><subject>Ionization potentials, electron affinities, molecular core binding energy</subject><subject>Molecular properties and interactions with photons</subject><subject>Physics</subject><subject>Properties of molecules and molecular ions</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNptkM1uEzEUhS0EoqGw4AWQNyAhdYp_xuMZdiW0tFIFkRI2bKxrj40cJnawPRLdseU1-ySdKFGzYXV17vl07tVB6DUl55Qw-mENhBPaSvEEzahgpBKUNU_RjBDCKtk2_AS9yHk9yZq19Dk6oayriWzYDOnLwZqSYjjD13d98r09wxB6fDWMcafwhXM--OJtxtHhpR-8iaGax1Bg2oefeLm1ZnI_3v_9h-dxsx0LFB8DDHhZxn5yXqJnDoZsXx3mKfp-dbmaX1e3377czC9uK-CyK1UtDG9Z39LWQke1Ea0E5jS1NeOtdi1Q3VNpnZREWw3AO2Jd41gNWkgpLD9F7_a52xR_jzYXtfHZ2GGAYOOYleQN6WRNJ_D9HjQp5pysU9vkN5DuFCVqV6h6LHRi3xxCR72x_ZE8NDgBbw8AZAODSxCMz0dOkI5Ktjta7Tmfi_3z6EP6pRrJpVCrxVLJ1eLzovn6Q3065oLJah3HNDWa__PgA6TumXc</recordid><startdate>20030903</startdate><enddate>20030903</enddate><creator>Damrauer, Robert</creator><creator>Crowell, April J</creator><creator>Craig, Colleen F</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030903</creationdate><title>Electron, Hydride, and Fluoride Affinities of Silicon-Containing Species:  Computational Studies</title><author>Damrauer, Robert ; Crowell, April J ; Craig, Colleen F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-45c382d818ea91bc587a2fb1e4238bf8a1bd17ef770bebaa390ef6f24ab5775e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Atomic and molecular physics</topic><topic>Exact sciences and technology</topic><topic>Ionization potentials, electron affinities, molecular core binding energy</topic><topic>Molecular properties and interactions with photons</topic><topic>Physics</topic><topic>Properties of molecules and molecular ions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Damrauer, Robert</creatorcontrib><creatorcontrib>Crowell, April J</creatorcontrib><creatorcontrib>Craig, Colleen F</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Damrauer, Robert</au><au>Crowell, April J</au><au>Craig, Colleen F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron, Hydride, and Fluoride Affinities of Silicon-Containing Species:  Computational Studies</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2003-09-03</date><risdate>2003</risdate><volume>125</volume><issue>35</issue><spage>10759</spage><epage>10766</epage><pages>10759-10766</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>The distance dependence of silicon substitution on the electron affinity (EA) of carbon radicals has been studied using computational methods in SiH3(CH2) n CH2 (A) and SiH2F(CH2) n CH2 (B). Large EAs result when n = 0 for both A and B. The result for A is compared with the experimental EA value of (CH3)3SiCH2. Similar comparisons with known EAs (CH3 and SiH3) establish the validity of the computational approach. Fluorine substitution in SiH2FCH2 is consistent with other fluorine substitution effects. When n &gt; 1, the anions of both A and B cyclize to pentacoordinate structures in which silicon has trigonal bipyramidal geometry. The corresponding EA values raise important questions about computed EAs that result from profound geometry changes between radicals and anions. Anions that have not cyclized give rise to EA values more easily interpreted. Such results, combined with computations of vertical attachment energies, indicate that the EA values of A and B attenuate rapidly for n &gt; 1, quickly approaching that of CH3. Pentacoordination effects of silicon anions were also studied for SiH4, (CH3)2SiH2, 1-silacyclopropane, 1-silacyclobutane, and 1-silacyclopentane.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>12940762</pmid><doi>10.1021/ja0301875</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2003-09, Vol.125 (35), p.10759-10766
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_73609741
source ACS Journals
subjects Atomic and molecular physics
Exact sciences and technology
Ionization potentials, electron affinities, molecular core binding energy
Molecular properties and interactions with photons
Physics
Properties of molecules and molecular ions
title Electron, Hydride, and Fluoride Affinities of Silicon-Containing Species:  Computational Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron,%20Hydride,%20and%20Fluoride%20Affinities%20of%20Silicon-Containing%20Species:%E2%80%89%20Computational%20Studies&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Damrauer,%20Robert&rft.date=2003-09-03&rft.volume=125&rft.issue=35&rft.spage=10759&rft.epage=10766&rft.pages=10759-10766&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja0301875&rft_dat=%3Cproquest_cross%3E73609741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73609741&rft_id=info:pmid/12940762&rfr_iscdi=true