Isospectral shapes with Neumann and alternating boundary conditions

The isospectrality of a well-known pair of shapes constructed from two arrangements of seven congruent right isosceles triangles with the Neumann boundary condition is verified numerically to high precision. Equally strong numerical evidence for isospectrality is presented for the eigenvalues of thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-07, Vol.68 (1 Pt 2), p.016702-016702, Article 016702
Hauptverfasser: Driscoll, T A, Gottlieb, H P W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 016702
container_issue 1 Pt 2
container_start_page 016702
container_title Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
container_volume 68
creator Driscoll, T A
Gottlieb, H P W
description The isospectrality of a well-known pair of shapes constructed from two arrangements of seven congruent right isosceles triangles with the Neumann boundary condition is verified numerically to high precision. Equally strong numerical evidence for isospectrality is presented for the eigenvalues of this standard pair in new boundary configurations with alternating Dirichlet and Neumann boundary conditions along successive edges. Good agreement with theory is obtained for the corresponding spectral staircase functions. Strong numerical evidence is also presented for isospectrality in an example of a different pair of shapes whose basic building-block triangle is not isosceles. Some possible confirmatory experiments involving fluids are suggested.
doi_str_mv 10.1103/PhysRevE.68.016702
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73600101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73600101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-f97ae50c15fb77eaa226a633f2d98c23c2dd2dea232637ae00987ef829996f0a3</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqXwAyxQVuxSxnb9WqKqQKUKEIK15doTGpQ4JU5A_XuCWsRq7uLcq9Eh5JLClFLgN8-bXXrBr8VU6ilQqYAdkTEFI3KutDoesuBmyEKMyFlKHwCccT07JSPKDBdMszGZL1OTtui71lVZ2rgtpuy77DbZI_a1izFzMWSu6rCNrivje7Zu-hhcu8t8E0PZlU1M5-SkcFXCi8OdkLe7xev8IV893S_nt6vcz6jo8sIohwI8FcVaKXSOMekk5wULRnvGPQuBBXSMM8kHFMBohYVmxhhZgOMTcr3f3bbNZ4-ps3WZPFaVi9j0ySouASjQAWR70LdNSi0WdtuW9fC0pWB_1dk_dVZqu1c3lK4O6_26xvBfObjiP5HnbJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73600101</pqid></control><display><type>article</type><title>Isospectral shapes with Neumann and alternating boundary conditions</title><source>American Physical Society Journals</source><creator>Driscoll, T A ; Gottlieb, H P W</creator><creatorcontrib>Driscoll, T A ; Gottlieb, H P W</creatorcontrib><description>The isospectrality of a well-known pair of shapes constructed from two arrangements of seven congruent right isosceles triangles with the Neumann boundary condition is verified numerically to high precision. Equally strong numerical evidence for isospectrality is presented for the eigenvalues of this standard pair in new boundary configurations with alternating Dirichlet and Neumann boundary conditions along successive edges. Good agreement with theory is obtained for the corresponding spectral staircase functions. Strong numerical evidence is also presented for isospectrality in an example of a different pair of shapes whose basic building-block triangle is not isosceles. Some possible confirmatory experiments involving fluids are suggested.</description><identifier>ISSN: 1539-3755</identifier><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>DOI: 10.1103/PhysRevE.68.016702</identifier><identifier>PMID: 12935282</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-07, Vol.68 (1 Pt 2), p.016702-016702, Article 016702</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-f97ae50c15fb77eaa226a633f2d98c23c2dd2dea232637ae00987ef829996f0a3</citedby><cites>FETCH-LOGICAL-c415t-f97ae50c15fb77eaa226a633f2d98c23c2dd2dea232637ae00987ef829996f0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12935282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Driscoll, T A</creatorcontrib><creatorcontrib>Gottlieb, H P W</creatorcontrib><title>Isospectral shapes with Neumann and alternating boundary conditions</title><title>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The isospectrality of a well-known pair of shapes constructed from two arrangements of seven congruent right isosceles triangles with the Neumann boundary condition is verified numerically to high precision. Equally strong numerical evidence for isospectrality is presented for the eigenvalues of this standard pair in new boundary configurations with alternating Dirichlet and Neumann boundary conditions along successive edges. Good agreement with theory is obtained for the corresponding spectral staircase functions. Strong numerical evidence is also presented for isospectrality in an example of a different pair of shapes whose basic building-block triangle is not isosceles. Some possible confirmatory experiments involving fluids are suggested.</description><issn>1539-3755</issn><issn>1063-651X</issn><issn>1095-3787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EoqXwAyxQVuxSxnb9WqKqQKUKEIK15doTGpQ4JU5A_XuCWsRq7uLcq9Eh5JLClFLgN8-bXXrBr8VU6ilQqYAdkTEFI3KutDoesuBmyEKMyFlKHwCccT07JSPKDBdMszGZL1OTtui71lVZ2rgtpuy77DbZI_a1izFzMWSu6rCNrivje7Zu-hhcu8t8E0PZlU1M5-SkcFXCi8OdkLe7xev8IV893S_nt6vcz6jo8sIohwI8FcVaKXSOMekk5wULRnvGPQuBBXSMM8kHFMBohYVmxhhZgOMTcr3f3bbNZ4-ps3WZPFaVi9j0ySouASjQAWR70LdNSi0WdtuW9fC0pWB_1dk_dVZqu1c3lK4O6_26xvBfObjiP5HnbJU</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Driscoll, T A</creator><creator>Gottlieb, H P W</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030701</creationdate><title>Isospectral shapes with Neumann and alternating boundary conditions</title><author>Driscoll, T A ; Gottlieb, H P W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-f97ae50c15fb77eaa226a633f2d98c23c2dd2dea232637ae00987ef829996f0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Driscoll, T A</creatorcontrib><creatorcontrib>Gottlieb, H P W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Driscoll, T A</au><au>Gottlieb, H P W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isospectral shapes with Neumann and alternating boundary conditions</atitle><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2003-07-01</date><risdate>2003</risdate><volume>68</volume><issue>1 Pt 2</issue><spage>016702</spage><epage>016702</epage><pages>016702-016702</pages><artnum>016702</artnum><issn>1539-3755</issn><issn>1063-651X</issn><eissn>1095-3787</eissn><abstract>The isospectrality of a well-known pair of shapes constructed from two arrangements of seven congruent right isosceles triangles with the Neumann boundary condition is verified numerically to high precision. Equally strong numerical evidence for isospectrality is presented for the eigenvalues of this standard pair in new boundary configurations with alternating Dirichlet and Neumann boundary conditions along successive edges. Good agreement with theory is obtained for the corresponding spectral staircase functions. Strong numerical evidence is also presented for isospectrality in an example of a different pair of shapes whose basic building-block triangle is not isosceles. Some possible confirmatory experiments involving fluids are suggested.</abstract><cop>United States</cop><pmid>12935282</pmid><doi>10.1103/PhysRevE.68.016702</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-07, Vol.68 (1 Pt 2), p.016702-016702, Article 016702
issn 1539-3755
1063-651X
1095-3787
language eng
recordid cdi_proquest_miscellaneous_73600101
source American Physical Society Journals
title Isospectral shapes with Neumann and alternating boundary conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isospectral%20shapes%20with%20Neumann%20and%20alternating%20boundary%20conditions&rft.jtitle=Physical%20review.%20E,%20Statistical%20physics,%20plasmas,%20fluids,%20and%20related%20interdisciplinary%20topics&rft.au=Driscoll,%20T%20A&rft.date=2003-07-01&rft.volume=68&rft.issue=1%20Pt%202&rft.spage=016702&rft.epage=016702&rft.pages=016702-016702&rft.artnum=016702&rft.issn=1539-3755&rft.eissn=1095-3787&rft_id=info:doi/10.1103/PhysRevE.68.016702&rft_dat=%3Cproquest_cross%3E73600101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73600101&rft_id=info:pmid/12935282&rfr_iscdi=true