Polyketide Synthase Genes from Marine Dinoflagellates

: AbstractRapidly developing techniques for manipulating the pathways of polyketide biosynthesis at the genomic level have created the demand for new pathways with novel biosynthetic capability. Polyketides derived from dinoflagellates are among the most complex and unique structures identified thus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine biotechnology (New York, N.Y.) N.Y.), 2003-01, Vol.5 (1), p.1-12
Hauptverfasser: Snyder, R V, Gibbs, P D L, Palacios, A, Abiy, L, Dickey, R, Lopez, J V, Rein, K S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 1
container_title Marine biotechnology (New York, N.Y.)
container_volume 5
creator Snyder, R V
Gibbs, P D L
Palacios, A
Abiy, L
Dickey, R
Lopez, J V
Rein, K S
description : AbstractRapidly developing techniques for manipulating the pathways of polyketide biosynthesis at the genomic level have created the demand for new pathways with novel biosynthetic capability. Polyketides derived from dinoflagellates are among the most complex and unique structures identified thus far, yet no studies of the biosynthesis of dinoflagellate-derived polyketides at the genomic level have been reported. Nine strains representing 7 different species of dinoflagellates were screened for the presence of type I and type II polyketide synthases (PKSs) by polymerase chain reaction (PCR) and reverse transcriptase PCR. Seven of the 9 strains yielded products that were homologous with known and putative type I PKSs. Unexpectedly, a PKS gene was amplified from cultures of the dinoflagellate Gymnodinium catenatum, a saxitoxin producer, which is not known to produce a polyketide. In each case the presence of a PKS gene was correlated with the presence of bacteria in the cultures as identified by amplification of the bacterial 16S ribosomal RNA gene. However, amplification from polyadenylated RNA, the lack of PKS expression in light-deprived cultures, residual phylogenetic signals, resistance to methylation-sensitive restriction enzymes, and the lack of hybridization to bacterial isolates support a dinoflagellate origin for most of these genes.
doi_str_mv 10.1007/s10126-002-0077-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73583021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2097369091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2a76dbc3baafa5603552acd63667ddf3e38108be04ee4f22cc9ca35fcf7bb8cf3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EolB4ABaIGNgCZzt23BEVKEhFIJXOluOcS0qagJ0OeXtctQKJheF0N3z36-4j5IzCNQXIbwIFymQKwGLledrvkSOacZkyxuX-z8zUgByHsIQNxOGQDCgbMTGi_IiI17buP7CrSkxmfdO9m4DJBBsMifPtKnk2vmowuaua1tVmgXVtOgwn5MCZOuDprg_J_OH-bfyYTl8mT-PbaWozUF3KTC7LwvLCGGeEBC4EM7aUXMq8LB1HriioAiFDzBxj1o6s4cJZlxeFso4PydU299O3X2sMnV5VwW6OaLBdB51zoTgw-i9IlRJCMR7Byz_gsl37Jj4RwzKRjajIIkS3kPVtCB6d_vTVyvheU9Ab83prXkfzeiNV93HnfBe8LlZY_m7sVEfgYgs402qz8FXQ8xkDKgFolkMkvgE50odx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734549154</pqid></control><display><type>article</type><title>Polyketide Synthase Genes from Marine Dinoflagellates</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Snyder, R V ; Gibbs, P D L ; Palacios, A ; Abiy, L ; Dickey, R ; Lopez, J V ; Rein, K S</creator><creatorcontrib>Snyder, R V ; Gibbs, P D L ; Palacios, A ; Abiy, L ; Dickey, R ; Lopez, J V ; Rein, K S</creatorcontrib><description>: AbstractRapidly developing techniques for manipulating the pathways of polyketide biosynthesis at the genomic level have created the demand for new pathways with novel biosynthetic capability. Polyketides derived from dinoflagellates are among the most complex and unique structures identified thus far, yet no studies of the biosynthesis of dinoflagellate-derived polyketides at the genomic level have been reported. Nine strains representing 7 different species of dinoflagellates were screened for the presence of type I and type II polyketide synthases (PKSs) by polymerase chain reaction (PCR) and reverse transcriptase PCR. Seven of the 9 strains yielded products that were homologous with known and putative type I PKSs. Unexpectedly, a PKS gene was amplified from cultures of the dinoflagellate Gymnodinium catenatum, a saxitoxin producer, which is not known to produce a polyketide. In each case the presence of a PKS gene was correlated with the presence of bacteria in the cultures as identified by amplification of the bacterial 16S ribosomal RNA gene. However, amplification from polyadenylated RNA, the lack of PKS expression in light-deprived cultures, residual phylogenetic signals, resistance to methylation-sensitive restriction enzymes, and the lack of hybridization to bacterial isolates support a dinoflagellate origin for most of these genes.</description><identifier>ISSN: 1436-2228</identifier><identifier>EISSN: 1436-2236</identifier><identifier>DOI: 10.1007/s10126-002-0077-y</identifier><identifier>PMID: 12925913</identifier><language>eng</language><publisher>United States: Springer-Verlag</publisher><subject>Animals ; Bacteria ; Biosynthesis ; Cloning ; Dinoflagellida - enzymology ; Dinoflagellida - genetics ; Dinophyta ; DNA - isolation &amp; purification ; Enzymes ; Gene Expression Profiling ; Genes ; Genetic Testing ; Gymnodinium catenatum ; Laboratories ; Marine biology ; Multienzyme Complexes - genetics ; Polyketide synthase ; Polymerase chain reaction ; Proteins ; Reverse Transcriptase Polymerase Chain Reaction ; RNA - isolation &amp; purification ; rRNA 16S ; saxitoxin ; Seafood ; Sequence Analysis, DNA ; Species Specificity ; Studies</subject><ispartof>Marine biotechnology (New York, N.Y.), 2003-01, Vol.5 (1), p.1-12</ispartof><rights>Springer-Verlag New York Inc. 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2a76dbc3baafa5603552acd63667ddf3e38108be04ee4f22cc9ca35fcf7bb8cf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12925913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Snyder, R V</creatorcontrib><creatorcontrib>Gibbs, P D L</creatorcontrib><creatorcontrib>Palacios, A</creatorcontrib><creatorcontrib>Abiy, L</creatorcontrib><creatorcontrib>Dickey, R</creatorcontrib><creatorcontrib>Lopez, J V</creatorcontrib><creatorcontrib>Rein, K S</creatorcontrib><title>Polyketide Synthase Genes from Marine Dinoflagellates</title><title>Marine biotechnology (New York, N.Y.)</title><addtitle>Mar Biotechnol (NY)</addtitle><description>: AbstractRapidly developing techniques for manipulating the pathways of polyketide biosynthesis at the genomic level have created the demand for new pathways with novel biosynthetic capability. Polyketides derived from dinoflagellates are among the most complex and unique structures identified thus far, yet no studies of the biosynthesis of dinoflagellate-derived polyketides at the genomic level have been reported. Nine strains representing 7 different species of dinoflagellates were screened for the presence of type I and type II polyketide synthases (PKSs) by polymerase chain reaction (PCR) and reverse transcriptase PCR. Seven of the 9 strains yielded products that were homologous with known and putative type I PKSs. Unexpectedly, a PKS gene was amplified from cultures of the dinoflagellate Gymnodinium catenatum, a saxitoxin producer, which is not known to produce a polyketide. In each case the presence of a PKS gene was correlated with the presence of bacteria in the cultures as identified by amplification of the bacterial 16S ribosomal RNA gene. However, amplification from polyadenylated RNA, the lack of PKS expression in light-deprived cultures, residual phylogenetic signals, resistance to methylation-sensitive restriction enzymes, and the lack of hybridization to bacterial isolates support a dinoflagellate origin for most of these genes.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Biosynthesis</subject><subject>Cloning</subject><subject>Dinoflagellida - enzymology</subject><subject>Dinoflagellida - genetics</subject><subject>Dinophyta</subject><subject>DNA - isolation &amp; purification</subject><subject>Enzymes</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genetic Testing</subject><subject>Gymnodinium catenatum</subject><subject>Laboratories</subject><subject>Marine biology</subject><subject>Multienzyme Complexes - genetics</subject><subject>Polyketide synthase</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA - isolation &amp; purification</subject><subject>rRNA 16S</subject><subject>saxitoxin</subject><subject>Seafood</subject><subject>Sequence Analysis, DNA</subject><subject>Species Specificity</subject><subject>Studies</subject><issn>1436-2228</issn><issn>1436-2236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkLFOwzAQhi0EolB4ABaIGNgCZzt23BEVKEhFIJXOluOcS0qagJ0OeXtctQKJheF0N3z36-4j5IzCNQXIbwIFymQKwGLledrvkSOacZkyxuX-z8zUgByHsIQNxOGQDCgbMTGi_IiI17buP7CrSkxmfdO9m4DJBBsMifPtKnk2vmowuaua1tVmgXVtOgwn5MCZOuDprg_J_OH-bfyYTl8mT-PbaWozUF3KTC7LwvLCGGeEBC4EM7aUXMq8LB1HriioAiFDzBxj1o6s4cJZlxeFso4PydU299O3X2sMnV5VwW6OaLBdB51zoTgw-i9IlRJCMR7Byz_gsl37Jj4RwzKRjajIIkS3kPVtCB6d_vTVyvheU9Ab83prXkfzeiNV93HnfBe8LlZY_m7sVEfgYgs402qz8FXQ8xkDKgFolkMkvgE50odx</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Snyder, R V</creator><creator>Gibbs, P D L</creator><creator>Palacios, A</creator><creator>Abiy, L</creator><creator>Dickey, R</creator><creator>Lopez, J V</creator><creator>Rein, K S</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7TN</scope><scope>7U9</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.F</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20030101</creationdate><title>Polyketide Synthase Genes from Marine Dinoflagellates</title><author>Snyder, R V ; Gibbs, P D L ; Palacios, A ; Abiy, L ; Dickey, R ; Lopez, J V ; Rein, K S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2a76dbc3baafa5603552acd63667ddf3e38108be04ee4f22cc9ca35fcf7bb8cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Biosynthesis</topic><topic>Cloning</topic><topic>Dinoflagellida - enzymology</topic><topic>Dinoflagellida - genetics</topic><topic>Dinophyta</topic><topic>DNA - isolation &amp; purification</topic><topic>Enzymes</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genetic Testing</topic><topic>Gymnodinium catenatum</topic><topic>Laboratories</topic><topic>Marine biology</topic><topic>Multienzyme Complexes - genetics</topic><topic>Polyketide synthase</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA - isolation &amp; purification</topic><topic>rRNA 16S</topic><topic>saxitoxin</topic><topic>Seafood</topic><topic>Sequence Analysis, DNA</topic><topic>Species Specificity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snyder, R V</creatorcontrib><creatorcontrib>Gibbs, P D L</creatorcontrib><creatorcontrib>Palacios, A</creatorcontrib><creatorcontrib>Abiy, L</creatorcontrib><creatorcontrib>Dickey, R</creatorcontrib><creatorcontrib>Lopez, J V</creatorcontrib><creatorcontrib>Rein, K S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Marine biotechnology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snyder, R V</au><au>Gibbs, P D L</au><au>Palacios, A</au><au>Abiy, L</au><au>Dickey, R</au><au>Lopez, J V</au><au>Rein, K S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyketide Synthase Genes from Marine Dinoflagellates</atitle><jtitle>Marine biotechnology (New York, N.Y.)</jtitle><addtitle>Mar Biotechnol (NY)</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>5</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1436-2228</issn><eissn>1436-2236</eissn><abstract>: AbstractRapidly developing techniques for manipulating the pathways of polyketide biosynthesis at the genomic level have created the demand for new pathways with novel biosynthetic capability. Polyketides derived from dinoflagellates are among the most complex and unique structures identified thus far, yet no studies of the biosynthesis of dinoflagellate-derived polyketides at the genomic level have been reported. Nine strains representing 7 different species of dinoflagellates were screened for the presence of type I and type II polyketide synthases (PKSs) by polymerase chain reaction (PCR) and reverse transcriptase PCR. Seven of the 9 strains yielded products that were homologous with known and putative type I PKSs. Unexpectedly, a PKS gene was amplified from cultures of the dinoflagellate Gymnodinium catenatum, a saxitoxin producer, which is not known to produce a polyketide. In each case the presence of a PKS gene was correlated with the presence of bacteria in the cultures as identified by amplification of the bacterial 16S ribosomal RNA gene. However, amplification from polyadenylated RNA, the lack of PKS expression in light-deprived cultures, residual phylogenetic signals, resistance to methylation-sensitive restriction enzymes, and the lack of hybridization to bacterial isolates support a dinoflagellate origin for most of these genes.</abstract><cop>United States</cop><pub>Springer-Verlag</pub><pmid>12925913</pmid><doi>10.1007/s10126-002-0077-y</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1436-2228
ispartof Marine biotechnology (New York, N.Y.), 2003-01, Vol.5 (1), p.1-12
issn 1436-2228
1436-2236
language eng
recordid cdi_proquest_miscellaneous_73583021
source MEDLINE; SpringerLink Journals
subjects Animals
Bacteria
Biosynthesis
Cloning
Dinoflagellida - enzymology
Dinoflagellida - genetics
Dinophyta
DNA - isolation & purification
Enzymes
Gene Expression Profiling
Genes
Genetic Testing
Gymnodinium catenatum
Laboratories
Marine biology
Multienzyme Complexes - genetics
Polyketide synthase
Polymerase chain reaction
Proteins
Reverse Transcriptase Polymerase Chain Reaction
RNA - isolation & purification
rRNA 16S
saxitoxin
Seafood
Sequence Analysis, DNA
Species Specificity
Studies
title Polyketide Synthase Genes from Marine Dinoflagellates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyketide%20Synthase%20Genes%20from%20Marine%20Dinoflagellates&rft.jtitle=Marine%20biotechnology%20(New%20York,%20N.Y.)&rft.au=Snyder,%20R%20V&rft.date=2003-01-01&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1436-2228&rft.eissn=1436-2236&rft_id=info:doi/10.1007/s10126-002-0077-y&rft_dat=%3Cproquest_cross%3E2097369091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734549154&rft_id=info:pmid/12925913&rfr_iscdi=true