Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics
This study investigated the possible benefit of subject specific optimization of preprocessing strategies in functional magnetic resonance imaging (fMRI) experiments. The optimization was performed using the data-driven performance metrics developed recently [Neuroimage 15 (2002), 747]. We applied n...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2003-07, Vol.19 (3), p.988-1001 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1001 |
---|---|
container_issue | 3 |
container_start_page | 988 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 19 |
creator | Shaw, Marnie E. Strother, Stephen C. Gavrilescu, Maria Podzebenko, Katherine Waites, Anthony Watson, John Anderson, Jon Jackson, Graeme Egan, Gary |
description | This study investigated the possible benefit of subject specific optimization of preprocessing strategies in functional magnetic resonance imaging (fMRI) experiments. The optimization was performed using the data-driven performance metrics developed recently [Neuroimage 15 (2002), 747]. We applied numerous preprocessing strategies and a multivariate statistical analysis to each of the 20 subjects in our two example fMRI data sets. We found that the optimal preprocessing strategy varied, in general, from subject to subject. For example, in one data set, optimum smoothing levels varied from 16 mm (4 subjects), 10 mm (5 subjects), to no smoothing at all (1 subject). This strongly suggests that group-specific preprocessing schemes may not give optimum results. For both studies, optimizing the preprocessing for each subject resulted in an increased number of suprathresholded voxels in within-subject analyses. Furthermore, we demonstrated that we were able to aggregate the optimized data with a random effects group analysis, resulting in improved sensitivity in one study and the detection of interesting, previously undetected results in the other. |
doi_str_mv | 10.1016/S1053-8119(03)00116-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73577719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811903001162</els_id><sourcerecordid>73577719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-bfafc0f4a763809aa7ee766e5ed44fc014a89226059c3b76fe624132fba203933</originalsourceid><addsrcrecordid>eNqFkcuKFTEQhoMozkUfQQkIMi5aK0kn6awGGUYdGBG8rEM6XdEc-mbSfcC3N33OEcGNq6qivqpK_p-QZwxeM2DqzRcGUlQNY-YKxCsAxlTFH5BzBkZWRmr-cMtPyBm5yHkHAIbVzWNyxnjTQMP1Odnf7l2_uiWO32le2x36heYZfQzR0znhnCaPOW9t_2OKJadxpMPaL_EPHj5-vqOdWxzNuGS6HuCtrroU9zjSGVOY0uBGj3TAJUWfn5BHwfUZn57iJfn27vbrzYfq_tP7u5u395Wva7ZUbXDBQ6idVqIB45xG1EqhxK6uS4fVrjGcK5DGi1argIrXTPDQOg7CCHFJXh73ln_8XDEvdojZY9-7Eac1Wy2k1pqZAr74B9xNaxrL2yyToKQxRvBCySPl05RzwmDnFAeXflkGdrPFHmyxm-YWhD3YYre556ftaztg93fq5EMBro8AFjH2EZPNPmIRrIupaGy7Kf7nxG8NhZ4B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506599932</pqid></control><display><type>article</type><title>Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Shaw, Marnie E. ; Strother, Stephen C. ; Gavrilescu, Maria ; Podzebenko, Katherine ; Waites, Anthony ; Watson, John ; Anderson, Jon ; Jackson, Graeme ; Egan, Gary</creator><creatorcontrib>Shaw, Marnie E. ; Strother, Stephen C. ; Gavrilescu, Maria ; Podzebenko, Katherine ; Waites, Anthony ; Watson, John ; Anderson, Jon ; Jackson, Graeme ; Egan, Gary</creatorcontrib><description>This study investigated the possible benefit of subject specific optimization of preprocessing strategies in functional magnetic resonance imaging (fMRI) experiments. The optimization was performed using the data-driven performance metrics developed recently [Neuroimage 15 (2002), 747]. We applied numerous preprocessing strategies and a multivariate statistical analysis to each of the 20 subjects in our two example fMRI data sets. We found that the optimal preprocessing strategy varied, in general, from subject to subject. For example, in one data set, optimum smoothing levels varied from 16 mm (4 subjects), 10 mm (5 subjects), to no smoothing at all (1 subject). This strongly suggests that group-specific preprocessing schemes may not give optimum results. For both studies, optimizing the preprocessing for each subject resulted in an increased number of suprathresholded voxels in within-subject analyses. Furthermore, we demonstrated that we were able to aggregate the optimized data with a random effects group analysis, resulting in improved sensitivity in one study and the detection of interesting, previously undetected results in the other.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/S1053-8119(03)00116-2</identifier><identifier>PMID: 12880827</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Accuracy ; Adult ; Algorithms ; Analysis of Variance ; Bias ; Brain - physiology ; Data analysis ; Female ; fMRI ; Generalizability ; Humans ; Image Processing, Computer-Assisted - statistics & numerical data ; Imagination - physiology ; Magnetic Resonance Imaging - statistics & numerical data ; Male ; Medical imaging ; Memory - physiology ; Optimization ; Oxygen - blood ; Preprocessing ; Probability ; Reproducibility ; Studies</subject><ispartof>NeuroImage (Orlando, Fla.), 2003-07, Vol.19 (3), p.988-1001</ispartof><rights>2003 Elsevier Science (USA)</rights><rights>Copyright Elsevier Limited Jul 1, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-bfafc0f4a763809aa7ee766e5ed44fc014a89226059c3b76fe624132fba203933</citedby><cites>FETCH-LOGICAL-c441t-bfafc0f4a763809aa7ee766e5ed44fc014a89226059c3b76fe624132fba203933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811903001162$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12880827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaw, Marnie E.</creatorcontrib><creatorcontrib>Strother, Stephen C.</creatorcontrib><creatorcontrib>Gavrilescu, Maria</creatorcontrib><creatorcontrib>Podzebenko, Katherine</creatorcontrib><creatorcontrib>Waites, Anthony</creatorcontrib><creatorcontrib>Watson, John</creatorcontrib><creatorcontrib>Anderson, Jon</creatorcontrib><creatorcontrib>Jackson, Graeme</creatorcontrib><creatorcontrib>Egan, Gary</creatorcontrib><title>Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>This study investigated the possible benefit of subject specific optimization of preprocessing strategies in functional magnetic resonance imaging (fMRI) experiments. The optimization was performed using the data-driven performance metrics developed recently [Neuroimage 15 (2002), 747]. We applied numerous preprocessing strategies and a multivariate statistical analysis to each of the 20 subjects in our two example fMRI data sets. We found that the optimal preprocessing strategy varied, in general, from subject to subject. For example, in one data set, optimum smoothing levels varied from 16 mm (4 subjects), 10 mm (5 subjects), to no smoothing at all (1 subject). This strongly suggests that group-specific preprocessing schemes may not give optimum results. For both studies, optimizing the preprocessing for each subject resulted in an increased number of suprathresholded voxels in within-subject analyses. Furthermore, we demonstrated that we were able to aggregate the optimized data with a random effects group analysis, resulting in improved sensitivity in one study and the detection of interesting, previously undetected results in the other.</description><subject>Accuracy</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Analysis of Variance</subject><subject>Bias</subject><subject>Brain - physiology</subject><subject>Data analysis</subject><subject>Female</subject><subject>fMRI</subject><subject>Generalizability</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - statistics & numerical data</subject><subject>Imagination - physiology</subject><subject>Magnetic Resonance Imaging - statistics & numerical data</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Memory - physiology</subject><subject>Optimization</subject><subject>Oxygen - blood</subject><subject>Preprocessing</subject><subject>Probability</subject><subject>Reproducibility</subject><subject>Studies</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkcuKFTEQhoMozkUfQQkIMi5aK0kn6awGGUYdGBG8rEM6XdEc-mbSfcC3N33OEcGNq6qivqpK_p-QZwxeM2DqzRcGUlQNY-YKxCsAxlTFH5BzBkZWRmr-cMtPyBm5yHkHAIbVzWNyxnjTQMP1Odnf7l2_uiWO32le2x36heYZfQzR0znhnCaPOW9t_2OKJadxpMPaL_EPHj5-vqOdWxzNuGS6HuCtrroU9zjSGVOY0uBGj3TAJUWfn5BHwfUZn57iJfn27vbrzYfq_tP7u5u395Wva7ZUbXDBQ6idVqIB45xG1EqhxK6uS4fVrjGcK5DGi1argIrXTPDQOg7CCHFJXh73ln_8XDEvdojZY9-7Eac1Wy2k1pqZAr74B9xNaxrL2yyToKQxRvBCySPl05RzwmDnFAeXflkGdrPFHmyxm-YWhD3YYre556ftaztg93fq5EMBro8AFjH2EZPNPmIRrIupaGy7Kf7nxG8NhZ4B</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Shaw, Marnie E.</creator><creator>Strother, Stephen C.</creator><creator>Gavrilescu, Maria</creator><creator>Podzebenko, Katherine</creator><creator>Waites, Anthony</creator><creator>Watson, John</creator><creator>Anderson, Jon</creator><creator>Jackson, Graeme</creator><creator>Egan, Gary</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20030701</creationdate><title>Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics</title><author>Shaw, Marnie E. ; Strother, Stephen C. ; Gavrilescu, Maria ; Podzebenko, Katherine ; Waites, Anthony ; Watson, John ; Anderson, Jon ; Jackson, Graeme ; Egan, Gary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-bfafc0f4a763809aa7ee766e5ed44fc014a89226059c3b76fe624132fba203933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Accuracy</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Analysis of Variance</topic><topic>Bias</topic><topic>Brain - physiology</topic><topic>Data analysis</topic><topic>Female</topic><topic>fMRI</topic><topic>Generalizability</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - statistics & numerical data</topic><topic>Imagination - physiology</topic><topic>Magnetic Resonance Imaging - statistics & numerical data</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Memory - physiology</topic><topic>Optimization</topic><topic>Oxygen - blood</topic><topic>Preprocessing</topic><topic>Probability</topic><topic>Reproducibility</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaw, Marnie E.</creatorcontrib><creatorcontrib>Strother, Stephen C.</creatorcontrib><creatorcontrib>Gavrilescu, Maria</creatorcontrib><creatorcontrib>Podzebenko, Katherine</creatorcontrib><creatorcontrib>Waites, Anthony</creatorcontrib><creatorcontrib>Watson, John</creatorcontrib><creatorcontrib>Anderson, Jon</creatorcontrib><creatorcontrib>Jackson, Graeme</creatorcontrib><creatorcontrib>Egan, Gary</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaw, Marnie E.</au><au>Strother, Stephen C.</au><au>Gavrilescu, Maria</au><au>Podzebenko, Katherine</au><au>Waites, Anthony</au><au>Watson, John</au><au>Anderson, Jon</au><au>Jackson, Graeme</au><au>Egan, Gary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2003-07-01</date><risdate>2003</risdate><volume>19</volume><issue>3</issue><spage>988</spage><epage>1001</epage><pages>988-1001</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>This study investigated the possible benefit of subject specific optimization of preprocessing strategies in functional magnetic resonance imaging (fMRI) experiments. The optimization was performed using the data-driven performance metrics developed recently [Neuroimage 15 (2002), 747]. We applied numerous preprocessing strategies and a multivariate statistical analysis to each of the 20 subjects in our two example fMRI data sets. We found that the optimal preprocessing strategy varied, in general, from subject to subject. For example, in one data set, optimum smoothing levels varied from 16 mm (4 subjects), 10 mm (5 subjects), to no smoothing at all (1 subject). This strongly suggests that group-specific preprocessing schemes may not give optimum results. For both studies, optimizing the preprocessing for each subject resulted in an increased number of suprathresholded voxels in within-subject analyses. Furthermore, we demonstrated that we were able to aggregate the optimized data with a random effects group analysis, resulting in improved sensitivity in one study and the detection of interesting, previously undetected results in the other.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12880827</pmid><doi>10.1016/S1053-8119(03)00116-2</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2003-07, Vol.19 (3), p.988-1001 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_73577719 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Accuracy Adult Algorithms Analysis of Variance Bias Brain - physiology Data analysis Female fMRI Generalizability Humans Image Processing, Computer-Assisted - statistics & numerical data Imagination - physiology Magnetic Resonance Imaging - statistics & numerical data Male Medical imaging Memory - physiology Optimization Oxygen - blood Preprocessing Probability Reproducibility Studies |
title | Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20subject%20specific%20preprocessing%20choices%20in%20multisubject%20fMRI%20data%20sets%20using%20data-driven%20performance%20metrics&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Shaw,%20Marnie%20E.&rft.date=2003-07-01&rft.volume=19&rft.issue=3&rft.spage=988&rft.epage=1001&rft.pages=988-1001&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/S1053-8119(03)00116-2&rft_dat=%3Cproquest_cross%3E73577719%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506599932&rft_id=info:pmid/12880827&rft_els_id=S1053811903001162&rfr_iscdi=true |