Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics

This study investigated the possible benefit of subject specific optimization of preprocessing strategies in functional magnetic resonance imaging (fMRI) experiments. The optimization was performed using the data-driven performance metrics developed recently [Neuroimage 15 (2002), 747]. We applied n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2003-07, Vol.19 (3), p.988-1001
Hauptverfasser: Shaw, Marnie E., Strother, Stephen C., Gavrilescu, Maria, Podzebenko, Katherine, Waites, Anthony, Watson, John, Anderson, Jon, Jackson, Graeme, Egan, Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1001
container_issue 3
container_start_page 988
container_title NeuroImage (Orlando, Fla.)
container_volume 19
creator Shaw, Marnie E.
Strother, Stephen C.
Gavrilescu, Maria
Podzebenko, Katherine
Waites, Anthony
Watson, John
Anderson, Jon
Jackson, Graeme
Egan, Gary
description This study investigated the possible benefit of subject specific optimization of preprocessing strategies in functional magnetic resonance imaging (fMRI) experiments. The optimization was performed using the data-driven performance metrics developed recently [Neuroimage 15 (2002), 747]. We applied numerous preprocessing strategies and a multivariate statistical analysis to each of the 20 subjects in our two example fMRI data sets. We found that the optimal preprocessing strategy varied, in general, from subject to subject. For example, in one data set, optimum smoothing levels varied from 16 mm (4 subjects), 10 mm (5 subjects), to no smoothing at all (1 subject). This strongly suggests that group-specific preprocessing schemes may not give optimum results. For both studies, optimizing the preprocessing for each subject resulted in an increased number of suprathresholded voxels in within-subject analyses. Furthermore, we demonstrated that we were able to aggregate the optimized data with a random effects group analysis, resulting in improved sensitivity in one study and the detection of interesting, previously undetected results in the other.
doi_str_mv 10.1016/S1053-8119(03)00116-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73577719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811903001162</els_id><sourcerecordid>73577719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-bfafc0f4a763809aa7ee766e5ed44fc014a89226059c3b76fe624132fba203933</originalsourceid><addsrcrecordid>eNqFkcuKFTEQhoMozkUfQQkIMi5aK0kn6awGGUYdGBG8rEM6XdEc-mbSfcC3N33OEcGNq6qivqpK_p-QZwxeM2DqzRcGUlQNY-YKxCsAxlTFH5BzBkZWRmr-cMtPyBm5yHkHAIbVzWNyxnjTQMP1Odnf7l2_uiWO32le2x36heYZfQzR0znhnCaPOW9t_2OKJadxpMPaL_EPHj5-vqOdWxzNuGS6HuCtrroU9zjSGVOY0uBGj3TAJUWfn5BHwfUZn57iJfn27vbrzYfq_tP7u5u395Wva7ZUbXDBQ6idVqIB45xG1EqhxK6uS4fVrjGcK5DGi1argIrXTPDQOg7CCHFJXh73ln_8XDEvdojZY9-7Eac1Wy2k1pqZAr74B9xNaxrL2yyToKQxRvBCySPl05RzwmDnFAeXflkGdrPFHmyxm-YWhD3YYre556ftaztg93fq5EMBro8AFjH2EZPNPmIRrIupaGy7Kf7nxG8NhZ4B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506599932</pqid></control><display><type>article</type><title>Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Shaw, Marnie E. ; Strother, Stephen C. ; Gavrilescu, Maria ; Podzebenko, Katherine ; Waites, Anthony ; Watson, John ; Anderson, Jon ; Jackson, Graeme ; Egan, Gary</creator><creatorcontrib>Shaw, Marnie E. ; Strother, Stephen C. ; Gavrilescu, Maria ; Podzebenko, Katherine ; Waites, Anthony ; Watson, John ; Anderson, Jon ; Jackson, Graeme ; Egan, Gary</creatorcontrib><description>This study investigated the possible benefit of subject specific optimization of preprocessing strategies in functional magnetic resonance imaging (fMRI) experiments. The optimization was performed using the data-driven performance metrics developed recently [Neuroimage 15 (2002), 747]. We applied numerous preprocessing strategies and a multivariate statistical analysis to each of the 20 subjects in our two example fMRI data sets. We found that the optimal preprocessing strategy varied, in general, from subject to subject. For example, in one data set, optimum smoothing levels varied from 16 mm (4 subjects), 10 mm (5 subjects), to no smoothing at all (1 subject). This strongly suggests that group-specific preprocessing schemes may not give optimum results. For both studies, optimizing the preprocessing for each subject resulted in an increased number of suprathresholded voxels in within-subject analyses. Furthermore, we demonstrated that we were able to aggregate the optimized data with a random effects group analysis, resulting in improved sensitivity in one study and the detection of interesting, previously undetected results in the other.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/S1053-8119(03)00116-2</identifier><identifier>PMID: 12880827</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Accuracy ; Adult ; Algorithms ; Analysis of Variance ; Bias ; Brain - physiology ; Data analysis ; Female ; fMRI ; Generalizability ; Humans ; Image Processing, Computer-Assisted - statistics &amp; numerical data ; Imagination - physiology ; Magnetic Resonance Imaging - statistics &amp; numerical data ; Male ; Medical imaging ; Memory - physiology ; Optimization ; Oxygen - blood ; Preprocessing ; Probability ; Reproducibility ; Studies</subject><ispartof>NeuroImage (Orlando, Fla.), 2003-07, Vol.19 (3), p.988-1001</ispartof><rights>2003 Elsevier Science (USA)</rights><rights>Copyright Elsevier Limited Jul 1, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-bfafc0f4a763809aa7ee766e5ed44fc014a89226059c3b76fe624132fba203933</citedby><cites>FETCH-LOGICAL-c441t-bfafc0f4a763809aa7ee766e5ed44fc014a89226059c3b76fe624132fba203933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811903001162$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12880827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaw, Marnie E.</creatorcontrib><creatorcontrib>Strother, Stephen C.</creatorcontrib><creatorcontrib>Gavrilescu, Maria</creatorcontrib><creatorcontrib>Podzebenko, Katherine</creatorcontrib><creatorcontrib>Waites, Anthony</creatorcontrib><creatorcontrib>Watson, John</creatorcontrib><creatorcontrib>Anderson, Jon</creatorcontrib><creatorcontrib>Jackson, Graeme</creatorcontrib><creatorcontrib>Egan, Gary</creatorcontrib><title>Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>This study investigated the possible benefit of subject specific optimization of preprocessing strategies in functional magnetic resonance imaging (fMRI) experiments. The optimization was performed using the data-driven performance metrics developed recently [Neuroimage 15 (2002), 747]. We applied numerous preprocessing strategies and a multivariate statistical analysis to each of the 20 subjects in our two example fMRI data sets. We found that the optimal preprocessing strategy varied, in general, from subject to subject. For example, in one data set, optimum smoothing levels varied from 16 mm (4 subjects), 10 mm (5 subjects), to no smoothing at all (1 subject). This strongly suggests that group-specific preprocessing schemes may not give optimum results. For both studies, optimizing the preprocessing for each subject resulted in an increased number of suprathresholded voxels in within-subject analyses. Furthermore, we demonstrated that we were able to aggregate the optimized data with a random effects group analysis, resulting in improved sensitivity in one study and the detection of interesting, previously undetected results in the other.</description><subject>Accuracy</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Analysis of Variance</subject><subject>Bias</subject><subject>Brain - physiology</subject><subject>Data analysis</subject><subject>Female</subject><subject>fMRI</subject><subject>Generalizability</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - statistics &amp; numerical data</subject><subject>Imagination - physiology</subject><subject>Magnetic Resonance Imaging - statistics &amp; numerical data</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Memory - physiology</subject><subject>Optimization</subject><subject>Oxygen - blood</subject><subject>Preprocessing</subject><subject>Probability</subject><subject>Reproducibility</subject><subject>Studies</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkcuKFTEQhoMozkUfQQkIMi5aK0kn6awGGUYdGBG8rEM6XdEc-mbSfcC3N33OEcGNq6qivqpK_p-QZwxeM2DqzRcGUlQNY-YKxCsAxlTFH5BzBkZWRmr-cMtPyBm5yHkHAIbVzWNyxnjTQMP1Odnf7l2_uiWO32le2x36heYZfQzR0znhnCaPOW9t_2OKJadxpMPaL_EPHj5-vqOdWxzNuGS6HuCtrroU9zjSGVOY0uBGj3TAJUWfn5BHwfUZn57iJfn27vbrzYfq_tP7u5u395Wva7ZUbXDBQ6idVqIB45xG1EqhxK6uS4fVrjGcK5DGi1argIrXTPDQOg7CCHFJXh73ln_8XDEvdojZY9-7Eac1Wy2k1pqZAr74B9xNaxrL2yyToKQxRvBCySPl05RzwmDnFAeXflkGdrPFHmyxm-YWhD3YYre556ftaztg93fq5EMBro8AFjH2EZPNPmIRrIupaGy7Kf7nxG8NhZ4B</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Shaw, Marnie E.</creator><creator>Strother, Stephen C.</creator><creator>Gavrilescu, Maria</creator><creator>Podzebenko, Katherine</creator><creator>Waites, Anthony</creator><creator>Watson, John</creator><creator>Anderson, Jon</creator><creator>Jackson, Graeme</creator><creator>Egan, Gary</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20030701</creationdate><title>Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics</title><author>Shaw, Marnie E. ; Strother, Stephen C. ; Gavrilescu, Maria ; Podzebenko, Katherine ; Waites, Anthony ; Watson, John ; Anderson, Jon ; Jackson, Graeme ; Egan, Gary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-bfafc0f4a763809aa7ee766e5ed44fc014a89226059c3b76fe624132fba203933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Accuracy</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Analysis of Variance</topic><topic>Bias</topic><topic>Brain - physiology</topic><topic>Data analysis</topic><topic>Female</topic><topic>fMRI</topic><topic>Generalizability</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - statistics &amp; numerical data</topic><topic>Imagination - physiology</topic><topic>Magnetic Resonance Imaging - statistics &amp; numerical data</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Memory - physiology</topic><topic>Optimization</topic><topic>Oxygen - blood</topic><topic>Preprocessing</topic><topic>Probability</topic><topic>Reproducibility</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaw, Marnie E.</creatorcontrib><creatorcontrib>Strother, Stephen C.</creatorcontrib><creatorcontrib>Gavrilescu, Maria</creatorcontrib><creatorcontrib>Podzebenko, Katherine</creatorcontrib><creatorcontrib>Waites, Anthony</creatorcontrib><creatorcontrib>Watson, John</creatorcontrib><creatorcontrib>Anderson, Jon</creatorcontrib><creatorcontrib>Jackson, Graeme</creatorcontrib><creatorcontrib>Egan, Gary</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaw, Marnie E.</au><au>Strother, Stephen C.</au><au>Gavrilescu, Maria</au><au>Podzebenko, Katherine</au><au>Waites, Anthony</au><au>Watson, John</au><au>Anderson, Jon</au><au>Jackson, Graeme</au><au>Egan, Gary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2003-07-01</date><risdate>2003</risdate><volume>19</volume><issue>3</issue><spage>988</spage><epage>1001</epage><pages>988-1001</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>This study investigated the possible benefit of subject specific optimization of preprocessing strategies in functional magnetic resonance imaging (fMRI) experiments. The optimization was performed using the data-driven performance metrics developed recently [Neuroimage 15 (2002), 747]. We applied numerous preprocessing strategies and a multivariate statistical analysis to each of the 20 subjects in our two example fMRI data sets. We found that the optimal preprocessing strategy varied, in general, from subject to subject. For example, in one data set, optimum smoothing levels varied from 16 mm (4 subjects), 10 mm (5 subjects), to no smoothing at all (1 subject). This strongly suggests that group-specific preprocessing schemes may not give optimum results. For both studies, optimizing the preprocessing for each subject resulted in an increased number of suprathresholded voxels in within-subject analyses. Furthermore, we demonstrated that we were able to aggregate the optimized data with a random effects group analysis, resulting in improved sensitivity in one study and the detection of interesting, previously undetected results in the other.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12880827</pmid><doi>10.1016/S1053-8119(03)00116-2</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2003-07, Vol.19 (3), p.988-1001
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_73577719
source MEDLINE; Elsevier ScienceDirect Journals
subjects Accuracy
Adult
Algorithms
Analysis of Variance
Bias
Brain - physiology
Data analysis
Female
fMRI
Generalizability
Humans
Image Processing, Computer-Assisted - statistics & numerical data
Imagination - physiology
Magnetic Resonance Imaging - statistics & numerical data
Male
Medical imaging
Memory - physiology
Optimization
Oxygen - blood
Preprocessing
Probability
Reproducibility
Studies
title Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20subject%20specific%20preprocessing%20choices%20in%20multisubject%20fMRI%20data%20sets%20using%20data-driven%20performance%20metrics&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Shaw,%20Marnie%20E.&rft.date=2003-07-01&rft.volume=19&rft.issue=3&rft.spage=988&rft.epage=1001&rft.pages=988-1001&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/S1053-8119(03)00116-2&rft_dat=%3Cproquest_cross%3E73577719%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506599932&rft_id=info:pmid/12880827&rft_els_id=S1053811903001162&rfr_iscdi=true