A comparison of statistical methods for analysis of high density oligonucleotide array data

Gene expression profiling has become an invaluable tool in functional genomics. A wide variety of statistical methods have been employed to analyze the data generated in experiments using Affymetrix GeneChip microarrays. It is important to understand the relative performance of these methods in term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2003-08, Vol.19 (12), p.1469-1476
1. Verfasser: RAJAGOPALAN, Dilip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1476
container_issue 12
container_start_page 1469
container_title Bioinformatics
container_volume 19
creator RAJAGOPALAN, Dilip
description Gene expression profiling has become an invaluable tool in functional genomics. A wide variety of statistical methods have been employed to analyze the data generated in experiments using Affymetrix GeneChip microarrays. It is important to understand the relative performance of these methods in terms of accuracy in detecting and quantifying relative gene expression levels and changes in gene expression. Three different analysis approaches have been compared in this work: non-parametric statistical methods implemented in Affymetrix Microarray Analysis Suite v5.0 (MAS5); an error-modeling based approach implemented in Rosetta Resolver v3.1; and an intensity-modeling approach implemented in dChip v1.1. A Latin Square data set generated and made available by Affymetrix was used in the comparison. All three methods-Resolver, MAS5 and the version of dChip based on the difference between perfect match and mismatch intensities-perform well in quantifying gene expression. Presence calls made by MAS5 and Resolver perform well at high concentrations, but they cannot be relied upon at low concentrations. The performance of Resolver and MAS5 in detecting 2-fold changes in transcript concentration is superior to that of dChip. At a comparable false positive rate, Resolver and MAS5 are able to detect many more true changes in transcript concentration. Estimated fold changes calculated by all the methods are biased below the true values.
doi_str_mv 10.1093/bioinformatics/btg202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73564016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73564016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-1d3084badb6d4dc8e3dcc92aef2cebbf4bb6daf4633e24eefead9dda976c78953</originalsourceid><addsrcrecordid>eNqF0U2LFDEQBuAgivuhP0EJgt7GTTrpdOe4LOoKC1705KGpTiozWbo7Yyp9mH9vhhlc9OIpgTz1Bupl7I0UH6Ww6maMKS4h5RlKdHQzlm0jmmfsUirTbXQv5fM_d6Eu2BXRoxCiFa15yS5kY2XTN-aS_bzlLs17yJHSwlPgVGog1UyY-Ixllzzx-g2HBaYDRTqaXdzuuMeFYjnwNMVtWlY3YSrRI4ec4cA9FHjFXgSYCF-fz2v24_On73f3m4dvX77e3T5snNaibKRXotcj-NF47V2PyjtnG8DQOBzHoMf6AEEbpbDRiAHBW-_BdsZ1vW3VNftwyt3n9GtFKsMcyeE0wYJppaFTrdFCmv9CaSuS3RG--wc-pjXXDRxNb7RVra2oPSGXE1HGMOxznCEfBimGY0fD3x0Np47q3Ntz-DrO6J-mzqVU8P4MgGoNIcPiIj251grRW6t-A_z9omo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198649359</pqid></control><display><type>article</type><title>A comparison of statistical methods for analysis of high density oligonucleotide array data</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>RAJAGOPALAN, Dilip</creator><creatorcontrib>RAJAGOPALAN, Dilip</creatorcontrib><description>Gene expression profiling has become an invaluable tool in functional genomics. A wide variety of statistical methods have been employed to analyze the data generated in experiments using Affymetrix GeneChip microarrays. It is important to understand the relative performance of these methods in terms of accuracy in detecting and quantifying relative gene expression levels and changes in gene expression. Three different analysis approaches have been compared in this work: non-parametric statistical methods implemented in Affymetrix Microarray Analysis Suite v5.0 (MAS5); an error-modeling based approach implemented in Rosetta Resolver v3.1; and an intensity-modeling approach implemented in dChip v1.1. A Latin Square data set generated and made available by Affymetrix was used in the comparison. All three methods-Resolver, MAS5 and the version of dChip based on the difference between perfect match and mismatch intensities-perform well in quantifying gene expression. Presence calls made by MAS5 and Resolver perform well at high concentrations, but they cannot be relied upon at low concentrations. The performance of Resolver and MAS5 in detecting 2-fold changes in transcript concentration is superior to that of dChip. At a comparable false positive rate, Resolver and MAS5 are able to detect many more true changes in transcript concentration. Estimated fold changes calculated by all the methods are biased below the true values.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/btg202</identifier><identifier>PMID: 12912826</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling - methods ; General aspects ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Models, Genetic ; Models, Statistical ; Oligonucleotide Array Sequence Analysis - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Sequence Analysis, DNA - methods</subject><ispartof>Bioinformatics, 2003-08, Vol.19 (12), p.1469-1476</ispartof><rights>Copyright Oxford University Press(England) Aug 12, 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-1d3084badb6d4dc8e3dcc92aef2cebbf4bb6daf4633e24eefead9dda976c78953</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15900899$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12912826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>RAJAGOPALAN, Dilip</creatorcontrib><title>A comparison of statistical methods for analysis of high density oligonucleotide array data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Gene expression profiling has become an invaluable tool in functional genomics. A wide variety of statistical methods have been employed to analyze the data generated in experiments using Affymetrix GeneChip microarrays. It is important to understand the relative performance of these methods in terms of accuracy in detecting and quantifying relative gene expression levels and changes in gene expression. Three different analysis approaches have been compared in this work: non-parametric statistical methods implemented in Affymetrix Microarray Analysis Suite v5.0 (MAS5); an error-modeling based approach implemented in Rosetta Resolver v3.1; and an intensity-modeling approach implemented in dChip v1.1. A Latin Square data set generated and made available by Affymetrix was used in the comparison. All three methods-Resolver, MAS5 and the version of dChip based on the difference between perfect match and mismatch intensities-perform well in quantifying gene expression. Presence calls made by MAS5 and Resolver perform well at high concentrations, but they cannot be relied upon at low concentrations. The performance of Resolver and MAS5 in detecting 2-fold changes in transcript concentration is superior to that of dChip. At a comparable false positive rate, Resolver and MAS5 are able to detect many more true changes in transcript concentration. Estimated fold changes calculated by all the methods are biased below the true values.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling - methods</subject><subject>General aspects</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Sequence Analysis, DNA - methods</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U2LFDEQBuAgivuhP0EJgt7GTTrpdOe4LOoKC1705KGpTiozWbo7Yyp9mH9vhhlc9OIpgTz1Bupl7I0UH6Ww6maMKS4h5RlKdHQzlm0jmmfsUirTbXQv5fM_d6Eu2BXRoxCiFa15yS5kY2XTN-aS_bzlLs17yJHSwlPgVGog1UyY-Ixllzzx-g2HBaYDRTqaXdzuuMeFYjnwNMVtWlY3YSrRI4ec4cA9FHjFXgSYCF-fz2v24_On73f3m4dvX77e3T5snNaibKRXotcj-NF47V2PyjtnG8DQOBzHoMf6AEEbpbDRiAHBW-_BdsZ1vW3VNftwyt3n9GtFKsMcyeE0wYJppaFTrdFCmv9CaSuS3RG--wc-pjXXDRxNb7RVra2oPSGXE1HGMOxznCEfBimGY0fD3x0Np47q3Ntz-DrO6J-mzqVU8P4MgGoNIcPiIj251grRW6t-A_z9omo</recordid><startdate>20030812</startdate><enddate>20030812</enddate><creator>RAJAGOPALAN, Dilip</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030812</creationdate><title>A comparison of statistical methods for analysis of high density oligonucleotide array data</title><author>RAJAGOPALAN, Dilip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-1d3084badb6d4dc8e3dcc92aef2cebbf4bb6daf4633e24eefead9dda976c78953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling - methods</topic><topic>General aspects</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Sequence Analysis, DNA - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RAJAGOPALAN, Dilip</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RAJAGOPALAN, Dilip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of statistical methods for analysis of high density oligonucleotide array data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2003-08-12</date><risdate>2003</risdate><volume>19</volume><issue>12</issue><spage>1469</spage><epage>1476</epage><pages>1469-1476</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><coden>BOINFP</coden><abstract>Gene expression profiling has become an invaluable tool in functional genomics. A wide variety of statistical methods have been employed to analyze the data generated in experiments using Affymetrix GeneChip microarrays. It is important to understand the relative performance of these methods in terms of accuracy in detecting and quantifying relative gene expression levels and changes in gene expression. Three different analysis approaches have been compared in this work: non-parametric statistical methods implemented in Affymetrix Microarray Analysis Suite v5.0 (MAS5); an error-modeling based approach implemented in Rosetta Resolver v3.1; and an intensity-modeling approach implemented in dChip v1.1. A Latin Square data set generated and made available by Affymetrix was used in the comparison. All three methods-Resolver, MAS5 and the version of dChip based on the difference between perfect match and mismatch intensities-perform well in quantifying gene expression. Presence calls made by MAS5 and Resolver perform well at high concentrations, but they cannot be relied upon at low concentrations. The performance of Resolver and MAS5 in detecting 2-fold changes in transcript concentration is superior to that of dChip. At a comparable false positive rate, Resolver and MAS5 are able to detect many more true changes in transcript concentration. Estimated fold changes calculated by all the methods are biased below the true values.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>12912826</pmid><doi>10.1093/bioinformatics/btg202</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2003-08, Vol.19 (12), p.1469-1476
issn 1367-4803
1367-4811
1460-2059
language eng
recordid cdi_proquest_miscellaneous_73564016
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Biological and medical sciences
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
General aspects
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Models, Genetic
Models, Statistical
Oligonucleotide Array Sequence Analysis - methods
Reproducibility of Results
Sensitivity and Specificity
Sequence Analysis, DNA - methods
title A comparison of statistical methods for analysis of high density oligonucleotide array data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20statistical%20methods%20for%20analysis%20of%20high%20density%20oligonucleotide%20array%20data&rft.jtitle=Bioinformatics&rft.au=RAJAGOPALAN,%20Dilip&rft.date=2003-08-12&rft.volume=19&rft.issue=12&rft.spage=1469&rft.epage=1476&rft.pages=1469-1476&rft.issn=1367-4803&rft.eissn=1367-4811&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btg202&rft_dat=%3Cproquest_cross%3E73564016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198649359&rft_id=info:pmid/12912826&rfr_iscdi=true