Absolute interferometric test of aspheres by use of twin computer-generated holograms
A complete absolute interferometric test of axially symmetric aspheres is presented. The method is based on a specially designed computer-generated hologram (CGH) that reconstructs an aspherical wave as well as a spherical auxiliary wave. Since both phase functions have the same symmetry and their p...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2003-08, Vol.42 (22), p.4468-4479 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A complete absolute interferometric test of axially symmetric aspheres is presented. The method is based on a specially designed computer-generated hologram (CGH) that reconstructs an aspherical wave as well as a spherical auxiliary wave. Since both phase functions have the same symmetry and their pattern is simultaneously encoded, we call this type of multiplex hologram a Twin-CGH. The spherical wave is used for calibration. The aberrations of the spherical auxiliary wave are measured absolutely with either a spherical mirror or an absolute test for Fresnel zone plates. Thus the two types of aberration inherent in the CGH can be identified and separated from each other. The errors of the spherical wave can be transferred to those of the aspherical wave. Two different methods thatuse Twin-CGHs for absolute testing of aspheric surfaces are described. Test procedures are explained, equations are derived, and experimental results are presented. A mutual comparison of the two results and a comparison with the established N-position rotation test are given. |
---|---|
ISSN: | 1559-128X 0003-6935 1539-4522 |
DOI: | 10.1364/AO.42.004468 |