Striatal neurones show sustained recovery from severe hypoglycaemic insult

Glucose deprivation provides a reliable model to investigate cellular responses to metabolic dysfunction, and is reportedly associated with permanent cell death in many paradigms. Consistent with previous studies, primary cultures of rat striatal neurones exposed to 24‐h hypoglycaemia showed dramati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2003-07, Vol.86 (2), p.383-393
Hauptverfasser: McDermott, C. J., Bradley, K. N., McCarron, J. G., Palmer, A. M., Morris, B. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue 2
container_start_page 383
container_title Journal of neurochemistry
container_volume 86
creator McDermott, C. J.
Bradley, K. N.
McCarron, J. G.
Palmer, A. M.
Morris, B. J.
description Glucose deprivation provides a reliable model to investigate cellular responses to metabolic dysfunction, and is reportedly associated with permanent cell death in many paradigms. Consistent with previous studies, primary cultures of rat striatal neurones exposed to 24‐h hypoglycaemia showed dramatically decreased sodium 2,3‐bis(2‐methoxy‐4‐nitro‐5‐sulfophenyl)‐2H‐tetrazolium‐5‐carboxanilide (XTT) metabolism (used as a marker of cell viability) and increased TUNEL staining, suggesting widespread DNA damage typical of apoptotic cell death. Remarkably, restoration of normal glucose levels initiated a sustained recovery in XTT staining, along with a concomitant decrease in TUNEL staining, even after 24 h of hypoglycaemia, suggesting recovery of damaged neurones and repair of nicked DNA. No alterations in the levels of four DNA repair proteins could be detected during hypoglycaemia or recovery. A reduction in intracellular calcium concentration was seen in recovered cells. These data suggest that striatal cells do not die after extended periods of glucose deprivation, but survive in a form of suspended animation, with sufficient energy to maintain membrane potential.
doi_str_mv 10.1046/j.1471-4159.2003.01853.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73545661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73545661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4763-bb31a3d5719fe1629b370aa1eede2929db7e5dc9e6293c0238144906272703bd3</originalsourceid><addsrcrecordid>eNqNkEtP3DAURq2qqAy0f6Hypt0l9bUdO150gUYtDyFYQNeW49yUjPIY7IQh_56kMypLWN1Puuc-dAihwFJgUv3YpCA1JBIyk3LGRMogz0T6_IGs_jc-khVjnCeCSX5MTmLcMAZKKvhEjoHnGjJtVuTqbgi1G1xDOxxD32Gk8aHf0TjGwdUdljSg758wTLQKfUsjzhnpw7Tt_zaTd9jWntZdHJvhMzmqXBPxy6Gekj-_f92vL5Lr2_PL9dl14qVWIikKAU6UmQZTIShuCqGZc4BYIjfclIXGrPQG55bwjIscpDRMcc01E0UpTsn3_d5t6B9HjINt6-ixaVyH_RitFpnMlII3QciN5EIsYL4HfehjDFjZbahbFyYLzC7C7cYuXu3i1S7C7T_h9nke_Xq4MRYtlq-DB8Mz8O0AuOhdUwXX-Tq-ctJIZnI1cz_33K5ucHr3A_bqZr0k8QKK_Jvl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18942331</pqid></control><display><type>article</type><title>Striatal neurones show sustained recovery from severe hypoglycaemic insult</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>McDermott, C. J. ; Bradley, K. N. ; McCarron, J. G. ; Palmer, A. M. ; Morris, B. J.</creator><creatorcontrib>McDermott, C. J. ; Bradley, K. N. ; McCarron, J. G. ; Palmer, A. M. ; Morris, B. J.</creatorcontrib><description>Glucose deprivation provides a reliable model to investigate cellular responses to metabolic dysfunction, and is reportedly associated with permanent cell death in many paradigms. Consistent with previous studies, primary cultures of rat striatal neurones exposed to 24‐h hypoglycaemia showed dramatically decreased sodium 2,3‐bis(2‐methoxy‐4‐nitro‐5‐sulfophenyl)‐2H‐tetrazolium‐5‐carboxanilide (XTT) metabolism (used as a marker of cell viability) and increased TUNEL staining, suggesting widespread DNA damage typical of apoptotic cell death. Remarkably, restoration of normal glucose levels initiated a sustained recovery in XTT staining, along with a concomitant decrease in TUNEL staining, even after 24 h of hypoglycaemia, suggesting recovery of damaged neurones and repair of nicked DNA. No alterations in the levels of four DNA repair proteins could be detected during hypoglycaemia or recovery. A reduction in intracellular calcium concentration was seen in recovered cells. These data suggest that striatal cells do not die after extended periods of glucose deprivation, but survive in a form of suspended animation, with sufficient energy to maintain membrane potential.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1046/j.1471-4159.2003.01853.x</identifier><identifier>PMID: 12871579</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animals ; apoptosis ; bcl-2-Associated X Protein ; Biochemistry and metabolism ; Biological and medical sciences ; Caspases - metabolism ; Cell Survival - drug effects ; Cell Survival - physiology ; Cells, Cultured ; Central nervous system ; Corpus Striatum - cytology ; Corpus Striatum - metabolism ; DNA Damage - physiology ; DNA Repair - physiology ; Fundamental and applied biological sciences. Psychology ; Glucose - metabolism ; Glucose - pharmacology ; hypoglycaemia ; Hypoglycemia - metabolism ; In Situ Nick-End Labeling ; Neurons - cytology ; Neurons - metabolism ; neurotoxicity ; Proto-Oncogene Proteins - metabolism ; Proto-Oncogene Proteins c-bcl-2 ; Rats ; Rats, Wistar ; recovery ; Recovery of Function - drug effects ; Recovery of Function - physiology ; striatum ; Tetrazolium Salts - metabolism ; Time Factors ; Vertebrates: nervous system and sense organs</subject><ispartof>Journal of neurochemistry, 2003-07, Vol.86 (2), p.383-393</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4763-bb31a3d5719fe1629b370aa1eede2929db7e5dc9e6293c0238144906272703bd3</citedby><cites>FETCH-LOGICAL-c4763-bb31a3d5719fe1629b370aa1eede2929db7e5dc9e6293c0238144906272703bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1471-4159.2003.01853.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1471-4159.2003.01853.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14940986$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12871579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McDermott, C. J.</creatorcontrib><creatorcontrib>Bradley, K. N.</creatorcontrib><creatorcontrib>McCarron, J. G.</creatorcontrib><creatorcontrib>Palmer, A. M.</creatorcontrib><creatorcontrib>Morris, B. J.</creatorcontrib><title>Striatal neurones show sustained recovery from severe hypoglycaemic insult</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Glucose deprivation provides a reliable model to investigate cellular responses to metabolic dysfunction, and is reportedly associated with permanent cell death in many paradigms. Consistent with previous studies, primary cultures of rat striatal neurones exposed to 24‐h hypoglycaemia showed dramatically decreased sodium 2,3‐bis(2‐methoxy‐4‐nitro‐5‐sulfophenyl)‐2H‐tetrazolium‐5‐carboxanilide (XTT) metabolism (used as a marker of cell viability) and increased TUNEL staining, suggesting widespread DNA damage typical of apoptotic cell death. Remarkably, restoration of normal glucose levels initiated a sustained recovery in XTT staining, along with a concomitant decrease in TUNEL staining, even after 24 h of hypoglycaemia, suggesting recovery of damaged neurones and repair of nicked DNA. No alterations in the levels of four DNA repair proteins could be detected during hypoglycaemia or recovery. A reduction in intracellular calcium concentration was seen in recovered cells. These data suggest that striatal cells do not die after extended periods of glucose deprivation, but survive in a form of suspended animation, with sufficient energy to maintain membrane potential.</description><subject>Animals</subject><subject>apoptosis</subject><subject>bcl-2-Associated X Protein</subject><subject>Biochemistry and metabolism</subject><subject>Biological and medical sciences</subject><subject>Caspases - metabolism</subject><subject>Cell Survival - drug effects</subject><subject>Cell Survival - physiology</subject><subject>Cells, Cultured</subject><subject>Central nervous system</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - metabolism</subject><subject>DNA Damage - physiology</subject><subject>DNA Repair - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose - metabolism</subject><subject>Glucose - pharmacology</subject><subject>hypoglycaemia</subject><subject>Hypoglycemia - metabolism</subject><subject>In Situ Nick-End Labeling</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>neurotoxicity</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-bcl-2</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>recovery</subject><subject>Recovery of Function - drug effects</subject><subject>Recovery of Function - physiology</subject><subject>striatum</subject><subject>Tetrazolium Salts - metabolism</subject><subject>Time Factors</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkEtP3DAURq2qqAy0f6Hypt0l9bUdO150gUYtDyFYQNeW49yUjPIY7IQh_56kMypLWN1Puuc-dAihwFJgUv3YpCA1JBIyk3LGRMogz0T6_IGs_jc-khVjnCeCSX5MTmLcMAZKKvhEjoHnGjJtVuTqbgi1G1xDOxxD32Gk8aHf0TjGwdUdljSg758wTLQKfUsjzhnpw7Tt_zaTd9jWntZdHJvhMzmqXBPxy6Gekj-_f92vL5Lr2_PL9dl14qVWIikKAU6UmQZTIShuCqGZc4BYIjfclIXGrPQG55bwjIscpDRMcc01E0UpTsn3_d5t6B9HjINt6-ixaVyH_RitFpnMlII3QciN5EIsYL4HfehjDFjZbahbFyYLzC7C7cYuXu3i1S7C7T_h9nke_Xq4MRYtlq-DB8Mz8O0AuOhdUwXX-Tq-ctJIZnI1cz_33K5ucHr3A_bqZr0k8QKK_Jvl</recordid><startdate>200307</startdate><enddate>200307</enddate><creator>McDermott, C. J.</creator><creator>Bradley, K. N.</creator><creator>McCarron, J. G.</creator><creator>Palmer, A. M.</creator><creator>Morris, B. J.</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200307</creationdate><title>Striatal neurones show sustained recovery from severe hypoglycaemic insult</title><author>McDermott, C. J. ; Bradley, K. N. ; McCarron, J. G. ; Palmer, A. M. ; Morris, B. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4763-bb31a3d5719fe1629b370aa1eede2929db7e5dc9e6293c0238144906272703bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>apoptosis</topic><topic>bcl-2-Associated X Protein</topic><topic>Biochemistry and metabolism</topic><topic>Biological and medical sciences</topic><topic>Caspases - metabolism</topic><topic>Cell Survival - drug effects</topic><topic>Cell Survival - physiology</topic><topic>Cells, Cultured</topic><topic>Central nervous system</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - metabolism</topic><topic>DNA Damage - physiology</topic><topic>DNA Repair - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose - metabolism</topic><topic>Glucose - pharmacology</topic><topic>hypoglycaemia</topic><topic>Hypoglycemia - metabolism</topic><topic>In Situ Nick-End Labeling</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>neurotoxicity</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-bcl-2</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>recovery</topic><topic>Recovery of Function - drug effects</topic><topic>Recovery of Function - physiology</topic><topic>striatum</topic><topic>Tetrazolium Salts - metabolism</topic><topic>Time Factors</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDermott, C. J.</creatorcontrib><creatorcontrib>Bradley, K. N.</creatorcontrib><creatorcontrib>McCarron, J. G.</creatorcontrib><creatorcontrib>Palmer, A. M.</creatorcontrib><creatorcontrib>Morris, B. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDermott, C. J.</au><au>Bradley, K. N.</au><au>McCarron, J. G.</au><au>Palmer, A. M.</au><au>Morris, B. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Striatal neurones show sustained recovery from severe hypoglycaemic insult</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2003-07</date><risdate>2003</risdate><volume>86</volume><issue>2</issue><spage>383</spage><epage>393</epage><pages>383-393</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>Glucose deprivation provides a reliable model to investigate cellular responses to metabolic dysfunction, and is reportedly associated with permanent cell death in many paradigms. Consistent with previous studies, primary cultures of rat striatal neurones exposed to 24‐h hypoglycaemia showed dramatically decreased sodium 2,3‐bis(2‐methoxy‐4‐nitro‐5‐sulfophenyl)‐2H‐tetrazolium‐5‐carboxanilide (XTT) metabolism (used as a marker of cell viability) and increased TUNEL staining, suggesting widespread DNA damage typical of apoptotic cell death. Remarkably, restoration of normal glucose levels initiated a sustained recovery in XTT staining, along with a concomitant decrease in TUNEL staining, even after 24 h of hypoglycaemia, suggesting recovery of damaged neurones and repair of nicked DNA. No alterations in the levels of four DNA repair proteins could be detected during hypoglycaemia or recovery. A reduction in intracellular calcium concentration was seen in recovered cells. These data suggest that striatal cells do not die after extended periods of glucose deprivation, but survive in a form of suspended animation, with sufficient energy to maintain membrane potential.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>12871579</pmid><doi>10.1046/j.1471-4159.2003.01853.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2003-07, Vol.86 (2), p.383-393
issn 0022-3042
1471-4159
language eng
recordid cdi_proquest_miscellaneous_73545661
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals; Free Full-Text Journals in Chemistry
subjects Animals
apoptosis
bcl-2-Associated X Protein
Biochemistry and metabolism
Biological and medical sciences
Caspases - metabolism
Cell Survival - drug effects
Cell Survival - physiology
Cells, Cultured
Central nervous system
Corpus Striatum - cytology
Corpus Striatum - metabolism
DNA Damage - physiology
DNA Repair - physiology
Fundamental and applied biological sciences. Psychology
Glucose - metabolism
Glucose - pharmacology
hypoglycaemia
Hypoglycemia - metabolism
In Situ Nick-End Labeling
Neurons - cytology
Neurons - metabolism
neurotoxicity
Proto-Oncogene Proteins - metabolism
Proto-Oncogene Proteins c-bcl-2
Rats
Rats, Wistar
recovery
Recovery of Function - drug effects
Recovery of Function - physiology
striatum
Tetrazolium Salts - metabolism
Time Factors
Vertebrates: nervous system and sense organs
title Striatal neurones show sustained recovery from severe hypoglycaemic insult
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Striatal%20neurones%20show%20sustained%20recovery%20from%20severe%20hypoglycaemic%20insult&rft.jtitle=Journal%20of%20neurochemistry&rft.au=McDermott,%20C.%20J.&rft.date=2003-07&rft.volume=86&rft.issue=2&rft.spage=383&rft.epage=393&rft.pages=383-393&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1046/j.1471-4159.2003.01853.x&rft_dat=%3Cproquest_cross%3E73545661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18942331&rft_id=info:pmid/12871579&rfr_iscdi=true