Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI

In the past decade, it has become possible to use the nuclear (proton, 1 H) signal of the hydrogen atoms in water for noninvasive assessment of functional and physiological parameters with magnetic resonance imaging (MRI). Here we show that it is possible to produce pH-sensitive MRI contrast by expl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2003-08, Vol.9 (8), p.1085-1090
Hauptverfasser: Zhou, Jinyuan, van Zijl, Peter C M, Payen, Jean-Francois, Wilson, David A, Traystman, Richard J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1090
container_issue 8
container_start_page 1085
container_title Nature medicine
container_volume 9
creator Zhou, Jinyuan
van Zijl, Peter C M
Payen, Jean-Francois
Wilson, David A
Traystman, Richard J
description In the past decade, it has become possible to use the nuclear (proton, 1 H) signal of the hydrogen atoms in water for noninvasive assessment of functional and physiological parameters with magnetic resonance imaging (MRI). Here we show that it is possible to produce pH-sensitive MRI contrast by exploiting the exchange between the hydrogen atoms of water and the amide hydrogen atoms of endogenous mobile cellular proteins and peptides. Although amide proton concentrations are in the millimolar range, we achieved a detection sensitivity of several percent on the water signal (molar concentration). The pH dependence of the signal was calibrated in situ , using phosphorus spectroscopy to determine pH, and proton exchange spectroscopy to measure the amide proton transfer rate. To show the potential of amide proton transfer (APT) contrast for detecting acute stroke, pH effects were noninvasively imaged in ischemic rat brain. This observation opens the possibility of using intrinsic pH contrast, as well as protein- and/or peptide-content contrast, as diagnostic tools in clinical imaging.
doi_str_mv 10.1038/nm907
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_73539325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A193280206</galeid><sourcerecordid>A193280206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624t-51c3fa9eb7a8298e662c535de17c9a7fe7e109af0446b1f32a3b98f40ec4cd53</originalsourceid><addsrcrecordid>eNqNktFr1TAUxosobs79BYIEwYEPnUmTNs3jGOouTAZzim8lNz3pzWiTmqTg_vul68XrHQMlDwk5v-87h4-TZccEnxJM6492EJg_yw5JyaqccPzzeXpjXue1KKuD7FUItxhjikvxMjsgRc0LUvHDTH4PxnYobgDJwbSARu-isyiYzso-IKeRsdFLBX0_9dI_1MHYgKRt0QhjTKKAokMtRFARjRcItE6vkITo6_XqdfZCJyc43t5H2c3nTzfnF_nl1ZfV-dllrqqCxbwkimopYM1lXYgaqqpQJS1bIFwJyTVwIFhIjRmr1kTTQtK1qDXDoJhqS3qUnSy2acBfE4TYDCbMU0sLbgoNpyUVtPg3SATjjOMZfPcIvHWTn1NpioISQhlhCcoXqJM9NMZqN4fVgQUve2dBm_R9RlLnGhe4SvzpE3w6LQxGPSn4sCdITITfsZNTCM3q2_X_s1c_9tmTv9gNyD5uguunaJwN--D7BVTeheBBN6M3g_R3DcHNvHrNw-ol7u02rmk9QLujtru26xhSyXbgd3k-dnqzgFbGycMfp6V6D5gd5gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223113414</pqid></control><display><type>article</type><title>Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Zhou, Jinyuan ; van Zijl, Peter C M ; Payen, Jean-Francois ; Wilson, David A ; Traystman, Richard J</creator><creatorcontrib>Zhou, Jinyuan ; van Zijl, Peter C M ; Payen, Jean-Francois ; Wilson, David A ; Traystman, Richard J</creatorcontrib><description>In the past decade, it has become possible to use the nuclear (proton, 1 H) signal of the hydrogen atoms in water for noninvasive assessment of functional and physiological parameters with magnetic resonance imaging (MRI). Here we show that it is possible to produce pH-sensitive MRI contrast by exploiting the exchange between the hydrogen atoms of water and the amide hydrogen atoms of endogenous mobile cellular proteins and peptides. Although amide proton concentrations are in the millimolar range, we achieved a detection sensitivity of several percent on the water signal (molar concentration). The pH dependence of the signal was calibrated in situ , using phosphorus spectroscopy to determine pH, and proton exchange spectroscopy to measure the amide proton transfer rate. To show the potential of amide proton transfer (APT) contrast for detecting acute stroke, pH effects were noninvasively imaged in ischemic rat brain. This observation opens the possibility of using intrinsic pH contrast, as well as protein- and/or peptide-content contrast, as diagnostic tools in clinical imaging.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/nm907</identifier><identifier>PMID: 12872167</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Animals ; Biomedical and Life Sciences ; Biomedicine ; Brain - anatomy &amp; histology ; Cancer Research ; Hydrogen ; Hydrogen-Ion Concentration ; Infectious Diseases ; Ischemia - metabolism ; Magnetic Resonance Imaging - methods ; Metabolic Diseases ; Molecular Medicine ; Neurosciences ; Peptides ; Peptides - chemistry ; Physiology ; Proteins - chemistry ; Protons ; Rats ; Rats, Sprague-Dawley ; Spectroscopy ; technical-report ; Water - chemistry</subject><ispartof>Nature medicine, 2003-08, Vol.9 (8), p.1085-1090</ispartof><rights>Springer Nature America, Inc. 2003</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c624t-51c3fa9eb7a8298e662c535de17c9a7fe7e109af0446b1f32a3b98f40ec4cd53</citedby><cites>FETCH-LOGICAL-c624t-51c3fa9eb7a8298e662c535de17c9a7fe7e109af0446b1f32a3b98f40ec4cd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12872167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Jinyuan</creatorcontrib><creatorcontrib>van Zijl, Peter C M</creatorcontrib><creatorcontrib>Payen, Jean-Francois</creatorcontrib><creatorcontrib>Wilson, David A</creatorcontrib><creatorcontrib>Traystman, Richard J</creatorcontrib><title>Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>In the past decade, it has become possible to use the nuclear (proton, 1 H) signal of the hydrogen atoms in water for noninvasive assessment of functional and physiological parameters with magnetic resonance imaging (MRI). Here we show that it is possible to produce pH-sensitive MRI contrast by exploiting the exchange between the hydrogen atoms of water and the amide hydrogen atoms of endogenous mobile cellular proteins and peptides. Although amide proton concentrations are in the millimolar range, we achieved a detection sensitivity of several percent on the water signal (molar concentration). The pH dependence of the signal was calibrated in situ , using phosphorus spectroscopy to determine pH, and proton exchange spectroscopy to measure the amide proton transfer rate. To show the potential of amide proton transfer (APT) contrast for detecting acute stroke, pH effects were noninvasively imaged in ischemic rat brain. This observation opens the possibility of using intrinsic pH contrast, as well as protein- and/or peptide-content contrast, as diagnostic tools in clinical imaging.</description><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - anatomy &amp; histology</subject><subject>Cancer Research</subject><subject>Hydrogen</subject><subject>Hydrogen-Ion Concentration</subject><subject>Infectious Diseases</subject><subject>Ischemia - metabolism</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Metabolic Diseases</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Physiology</subject><subject>Proteins - chemistry</subject><subject>Protons</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Spectroscopy</subject><subject>technical-report</subject><subject>Water - chemistry</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNktFr1TAUxosobs79BYIEwYEPnUmTNs3jGOouTAZzim8lNz3pzWiTmqTg_vul68XrHQMlDwk5v-87h4-TZccEnxJM6492EJg_yw5JyaqccPzzeXpjXue1KKuD7FUItxhjikvxMjsgRc0LUvHDTH4PxnYobgDJwbSARu-isyiYzso-IKeRsdFLBX0_9dI_1MHYgKRt0QhjTKKAokMtRFARjRcItE6vkITo6_XqdfZCJyc43t5H2c3nTzfnF_nl1ZfV-dllrqqCxbwkimopYM1lXYgaqqpQJS1bIFwJyTVwIFhIjRmr1kTTQtK1qDXDoJhqS3qUnSy2acBfE4TYDCbMU0sLbgoNpyUVtPg3SATjjOMZfPcIvHWTn1NpioISQhlhCcoXqJM9NMZqN4fVgQUve2dBm_R9RlLnGhe4SvzpE3w6LQxGPSn4sCdITITfsZNTCM3q2_X_s1c_9tmTv9gNyD5uguunaJwN--D7BVTeheBBN6M3g_R3DcHNvHrNw-ol7u02rmk9QLujtru26xhSyXbgd3k-dnqzgFbGycMfp6V6D5gd5gQ</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Zhou, Jinyuan</creator><creator>van Zijl, Peter C M</creator><creator>Payen, Jean-Francois</creator><creator>Wilson, David A</creator><creator>Traystman, Richard J</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20030801</creationdate><title>Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI</title><author>Zhou, Jinyuan ; van Zijl, Peter C M ; Payen, Jean-Francois ; Wilson, David A ; Traystman, Richard J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624t-51c3fa9eb7a8298e662c535de17c9a7fe7e109af0446b1f32a3b98f40ec4cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - anatomy &amp; histology</topic><topic>Cancer Research</topic><topic>Hydrogen</topic><topic>Hydrogen-Ion Concentration</topic><topic>Infectious Diseases</topic><topic>Ischemia - metabolism</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Metabolic Diseases</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Physiology</topic><topic>Proteins - chemistry</topic><topic>Protons</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Spectroscopy</topic><topic>technical-report</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jinyuan</creatorcontrib><creatorcontrib>van Zijl, Peter C M</creatorcontrib><creatorcontrib>Payen, Jean-Francois</creatorcontrib><creatorcontrib>Wilson, David A</creatorcontrib><creatorcontrib>Traystman, Richard J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jinyuan</au><au>van Zijl, Peter C M</au><au>Payen, Jean-Francois</au><au>Wilson, David A</au><au>Traystman, Richard J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2003-08-01</date><risdate>2003</risdate><volume>9</volume><issue>8</issue><spage>1085</spage><epage>1090</epage><pages>1085-1090</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>In the past decade, it has become possible to use the nuclear (proton, 1 H) signal of the hydrogen atoms in water for noninvasive assessment of functional and physiological parameters with magnetic resonance imaging (MRI). Here we show that it is possible to produce pH-sensitive MRI contrast by exploiting the exchange between the hydrogen atoms of water and the amide hydrogen atoms of endogenous mobile cellular proteins and peptides. Although amide proton concentrations are in the millimolar range, we achieved a detection sensitivity of several percent on the water signal (molar concentration). The pH dependence of the signal was calibrated in situ , using phosphorus spectroscopy to determine pH, and proton exchange spectroscopy to measure the amide proton transfer rate. To show the potential of amide proton transfer (APT) contrast for detecting acute stroke, pH effects were noninvasively imaged in ischemic rat brain. This observation opens the possibility of using intrinsic pH contrast, as well as protein- and/or peptide-content contrast, as diagnostic tools in clinical imaging.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>12872167</pmid><doi>10.1038/nm907</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1078-8956
ispartof Nature medicine, 2003-08, Vol.9 (8), p.1085-1090
issn 1078-8956
1546-170X
language eng
recordid cdi_proquest_miscellaneous_73539325
source MEDLINE; Nature; Alma/SFX Local Collection
subjects Animals
Biomedical and Life Sciences
Biomedicine
Brain - anatomy & histology
Cancer Research
Hydrogen
Hydrogen-Ion Concentration
Infectious Diseases
Ischemia - metabolism
Magnetic Resonance Imaging - methods
Metabolic Diseases
Molecular Medicine
Neurosciences
Peptides
Peptides - chemistry
Physiology
Proteins - chemistry
Protons
Rats
Rats, Sprague-Dawley
Spectroscopy
technical-report
Water - chemistry
title Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20amide%20proton%20signals%20of%20intracellular%20proteins%20and%20peptides%20to%20detect%20pH%20effects%20in%20MRI&rft.jtitle=Nature%20medicine&rft.au=Zhou,%20Jinyuan&rft.date=2003-08-01&rft.volume=9&rft.issue=8&rft.spage=1085&rft.epage=1090&rft.pages=1085-1090&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/nm907&rft_dat=%3Cgale_proqu%3EA193280206%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223113414&rft_id=info:pmid/12872167&rft_galeid=A193280206&rfr_iscdi=true