Evolution of the mammalian G protein α subunit multigene family

Heterotrimeric guanine nucleotide binding proteins (G proteins) transduce extracellular signals received by transmembrane receptors to effector proteins. The multigene family of G protein α subunits, which interact with receptors and effectors, exhibit a high level of sequence diversity. In mammals,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 1992-05, Vol.1 (2), p.85-91
Hauptverfasser: Wilkie, Thomas M, Gilbert, Debra J, Olsen, Anne S, Chen, Xiao-Ning, Amatruda, Thomas T, Korenberg, Julie R, Trask, Barbara J, de Jong, Pieter, Reed, Randall R, Simon, Melvin I, Jenkins, Nancy A, Copeland, Neal G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 2
container_start_page 85
container_title Nature genetics
container_volume 1
creator Wilkie, Thomas M
Gilbert, Debra J
Olsen, Anne S
Chen, Xiao-Ning
Amatruda, Thomas T
Korenberg, Julie R
Trask, Barbara J
de Jong, Pieter
Reed, Randall R
Simon, Melvin I
Jenkins, Nancy A
Copeland, Neal G
description Heterotrimeric guanine nucleotide binding proteins (G proteins) transduce extracellular signals received by transmembrane receptors to effector proteins. The multigene family of G protein α subunits, which interact with receptors and effectors, exhibit a high level of sequence diversity. In mammals, 15 Gα subunit genes can be grouped by sequence and functional similarities into four classes. We have determined the murine chromosomal locations of all 15 Gα subunit genes using an interspecific backcross derived from crosses of C57BI/6J and Mus spretus mice. These data, in combination with mapping studies in humans, have provided insight into the events responsible for generating the genetic diversity found in the mammalian α subunit genes and a framework for elucidating the role of the Gα subunits in disease.
doi_str_mv 10.1038/ng0592-85
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73537479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73537479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-71e1be4dabd987734ae89fff2055a035fbe8661bfd86013e24d90a39069a3af23</originalsourceid><addsrcrecordid>eNptkc9Kw0AQxhdRaq0efABxT4JCdDeb_ZObUmoVCl70HDbNbN2SbGp2V-hj-SI-k5GUevE0M3w_Pma-QeickltKmLpzK8LzNFH8AI0pz0RCJVWHfU8ETTLCxDE68X5NCM0yokZoRBlJ-2GM7mefbR2DbR1uDQ7vgBvdNLq22uE53nRtAOvw9xf2sYzOBtzEOtgVOMBGN7benqIjo2sPZ7s6QW-Ps9fpU7J4mT9PHxbJkkkREkmBlpBVuqxyJSXLNKjcGJMSzjVh3JSghKClqZQglEGaVTnRLCci10yblE3Q1eDb7_QRwYeisX4Jda0dtNEXknEmM5n34PUALrvW-w5Mselso7ttQUnxm1YxpFUo3rMXO9NYNlD9kUM8vX4z6L5X3Aq6Yt3GzvV3_mt2OcBOh9jB3mz_HPYDd9V9hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73537479</pqid></control><display><type>article</type><title>Evolution of the mammalian G protein α subunit multigene family</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Wilkie, Thomas M ; Gilbert, Debra J ; Olsen, Anne S ; Chen, Xiao-Ning ; Amatruda, Thomas T ; Korenberg, Julie R ; Trask, Barbara J ; de Jong, Pieter ; Reed, Randall R ; Simon, Melvin I ; Jenkins, Nancy A ; Copeland, Neal G</creator><creatorcontrib>Wilkie, Thomas M ; Gilbert, Debra J ; Olsen, Anne S ; Chen, Xiao-Ning ; Amatruda, Thomas T ; Korenberg, Julie R ; Trask, Barbara J ; de Jong, Pieter ; Reed, Randall R ; Simon, Melvin I ; Jenkins, Nancy A ; Copeland, Neal G</creatorcontrib><description>Heterotrimeric guanine nucleotide binding proteins (G proteins) transduce extracellular signals received by transmembrane receptors to effector proteins. The multigene family of G protein α subunits, which interact with receptors and effectors, exhibit a high level of sequence diversity. In mammals, 15 Gα subunit genes can be grouped by sequence and functional similarities into four classes. We have determined the murine chromosomal locations of all 15 Gα subunit genes using an interspecific backcross derived from crosses of C57BI/6J and Mus spretus mice. These data, in combination with mapping studies in humans, have provided insight into the events responsible for generating the genetic diversity found in the mammalian α subunit genes and a framework for elucidating the role of the Gα subunits in disease.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng0592-85</identifier><identifier>PMID: 1302014</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Agriculture ; Animal Genetics and Genomics ; Animals ; Base Sequence ; Biological Evolution ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Chromosome Mapping ; Crosses, Genetic ; DNA - genetics ; DNA Probes ; Female ; Gene Function ; Genetic Linkage ; GTP-Binding Proteins - genetics ; Human Genetics ; Humans ; Invertebrates - genetics ; Male ; Mice ; Molecular Sequence Data ; Multigene Family</subject><ispartof>Nature genetics, 1992-05, Vol.1 (2), p.85-91</ispartof><rights>Springer Nature America, Inc. 1992</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-71e1be4dabd987734ae89fff2055a035fbe8661bfd86013e24d90a39069a3af23</citedby><cites>FETCH-LOGICAL-c376t-71e1be4dabd987734ae89fff2055a035fbe8661bfd86013e24d90a39069a3af23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1302014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilkie, Thomas M</creatorcontrib><creatorcontrib>Gilbert, Debra J</creatorcontrib><creatorcontrib>Olsen, Anne S</creatorcontrib><creatorcontrib>Chen, Xiao-Ning</creatorcontrib><creatorcontrib>Amatruda, Thomas T</creatorcontrib><creatorcontrib>Korenberg, Julie R</creatorcontrib><creatorcontrib>Trask, Barbara J</creatorcontrib><creatorcontrib>de Jong, Pieter</creatorcontrib><creatorcontrib>Reed, Randall R</creatorcontrib><creatorcontrib>Simon, Melvin I</creatorcontrib><creatorcontrib>Jenkins, Nancy A</creatorcontrib><creatorcontrib>Copeland, Neal G</creatorcontrib><title>Evolution of the mammalian G protein α subunit multigene family</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Heterotrimeric guanine nucleotide binding proteins (G proteins) transduce extracellular signals received by transmembrane receptors to effector proteins. The multigene family of G protein α subunits, which interact with receptors and effectors, exhibit a high level of sequence diversity. In mammals, 15 Gα subunit genes can be grouped by sequence and functional similarities into four classes. We have determined the murine chromosomal locations of all 15 Gα subunit genes using an interspecific backcross derived from crosses of C57BI/6J and Mus spretus mice. These data, in combination with mapping studies in humans, have provided insight into the events responsible for generating the genetic diversity found in the mammalian α subunit genes and a framework for elucidating the role of the Gα subunits in disease.</description><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological Evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Chromosome Mapping</subject><subject>Crosses, Genetic</subject><subject>DNA - genetics</subject><subject>DNA Probes</subject><subject>Female</subject><subject>Gene Function</subject><subject>Genetic Linkage</subject><subject>GTP-Binding Proteins - genetics</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Invertebrates - genetics</subject><subject>Male</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc9Kw0AQxhdRaq0efABxT4JCdDeb_ZObUmoVCl70HDbNbN2SbGp2V-hj-SI-k5GUevE0M3w_Pma-QeickltKmLpzK8LzNFH8AI0pz0RCJVWHfU8ETTLCxDE68X5NCM0yokZoRBlJ-2GM7mefbR2DbR1uDQ7vgBvdNLq22uE53nRtAOvw9xf2sYzOBtzEOtgVOMBGN7benqIjo2sPZ7s6QW-Ps9fpU7J4mT9PHxbJkkkREkmBlpBVuqxyJSXLNKjcGJMSzjVh3JSghKClqZQglEGaVTnRLCci10yblE3Q1eDb7_QRwYeisX4Jda0dtNEXknEmM5n34PUALrvW-w5Mselso7ttQUnxm1YxpFUo3rMXO9NYNlD9kUM8vX4z6L5X3Aq6Yt3GzvV3_mt2OcBOh9jB3mz_HPYDd9V9hg</recordid><startdate>19920501</startdate><enddate>19920501</enddate><creator>Wilkie, Thomas M</creator><creator>Gilbert, Debra J</creator><creator>Olsen, Anne S</creator><creator>Chen, Xiao-Ning</creator><creator>Amatruda, Thomas T</creator><creator>Korenberg, Julie R</creator><creator>Trask, Barbara J</creator><creator>de Jong, Pieter</creator><creator>Reed, Randall R</creator><creator>Simon, Melvin I</creator><creator>Jenkins, Nancy A</creator><creator>Copeland, Neal G</creator><general>Nature Publishing Group US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19920501</creationdate><title>Evolution of the mammalian G protein α subunit multigene family</title><author>Wilkie, Thomas M ; Gilbert, Debra J ; Olsen, Anne S ; Chen, Xiao-Ning ; Amatruda, Thomas T ; Korenberg, Julie R ; Trask, Barbara J ; de Jong, Pieter ; Reed, Randall R ; Simon, Melvin I ; Jenkins, Nancy A ; Copeland, Neal G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-71e1be4dabd987734ae89fff2055a035fbe8661bfd86013e24d90a39069a3af23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological Evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Chromosome Mapping</topic><topic>Crosses, Genetic</topic><topic>DNA - genetics</topic><topic>DNA Probes</topic><topic>Female</topic><topic>Gene Function</topic><topic>Genetic Linkage</topic><topic>GTP-Binding Proteins - genetics</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Invertebrates - genetics</topic><topic>Male</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilkie, Thomas M</creatorcontrib><creatorcontrib>Gilbert, Debra J</creatorcontrib><creatorcontrib>Olsen, Anne S</creatorcontrib><creatorcontrib>Chen, Xiao-Ning</creatorcontrib><creatorcontrib>Amatruda, Thomas T</creatorcontrib><creatorcontrib>Korenberg, Julie R</creatorcontrib><creatorcontrib>Trask, Barbara J</creatorcontrib><creatorcontrib>de Jong, Pieter</creatorcontrib><creatorcontrib>Reed, Randall R</creatorcontrib><creatorcontrib>Simon, Melvin I</creatorcontrib><creatorcontrib>Jenkins, Nancy A</creatorcontrib><creatorcontrib>Copeland, Neal G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilkie, Thomas M</au><au>Gilbert, Debra J</au><au>Olsen, Anne S</au><au>Chen, Xiao-Ning</au><au>Amatruda, Thomas T</au><au>Korenberg, Julie R</au><au>Trask, Barbara J</au><au>de Jong, Pieter</au><au>Reed, Randall R</au><au>Simon, Melvin I</au><au>Jenkins, Nancy A</au><au>Copeland, Neal G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of the mammalian G protein α subunit multigene family</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>1992-05-01</date><risdate>1992</risdate><volume>1</volume><issue>2</issue><spage>85</spage><epage>91</epage><pages>85-91</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Heterotrimeric guanine nucleotide binding proteins (G proteins) transduce extracellular signals received by transmembrane receptors to effector proteins. The multigene family of G protein α subunits, which interact with receptors and effectors, exhibit a high level of sequence diversity. In mammals, 15 Gα subunit genes can be grouped by sequence and functional similarities into four classes. We have determined the murine chromosomal locations of all 15 Gα subunit genes using an interspecific backcross derived from crosses of C57BI/6J and Mus spretus mice. These data, in combination with mapping studies in humans, have provided insight into the events responsible for generating the genetic diversity found in the mammalian α subunit genes and a framework for elucidating the role of the Gα subunits in disease.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>1302014</pmid><doi>10.1038/ng0592-85</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 1992-05, Vol.1 (2), p.85-91
issn 1061-4036
1546-1718
language eng
recordid cdi_proquest_miscellaneous_73537479
source MEDLINE; Nature; Alma/SFX Local Collection
subjects Agriculture
Animal Genetics and Genomics
Animals
Base Sequence
Biological Evolution
Biomedical and Life Sciences
Biomedicine
Cancer Research
Chromosome Mapping
Crosses, Genetic
DNA - genetics
DNA Probes
Female
Gene Function
Genetic Linkage
GTP-Binding Proteins - genetics
Human Genetics
Humans
Invertebrates - genetics
Male
Mice
Molecular Sequence Data
Multigene Family
title Evolution of the mammalian G protein α subunit multigene family
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20the%20mammalian%20G%20protein%20%CE%B1%20subunit%20multigene%20family&rft.jtitle=Nature%20genetics&rft.au=Wilkie,%20Thomas%20M&rft.date=1992-05-01&rft.volume=1&rft.issue=2&rft.spage=85&rft.epage=91&rft.pages=85-91&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/ng0592-85&rft_dat=%3Cproquest_cross%3E73537479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73537479&rft_id=info:pmid/1302014&rfr_iscdi=true