Evolution of the mammalian G protein α subunit multigene family
Heterotrimeric guanine nucleotide binding proteins (G proteins) transduce extracellular signals received by transmembrane receptors to effector proteins. The multigene family of G protein α subunits, which interact with receptors and effectors, exhibit a high level of sequence diversity. In mammals,...
Gespeichert in:
Veröffentlicht in: | Nature genetics 1992-05, Vol.1 (2), p.85-91 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | 2 |
container_start_page | 85 |
container_title | Nature genetics |
container_volume | 1 |
creator | Wilkie, Thomas M Gilbert, Debra J Olsen, Anne S Chen, Xiao-Ning Amatruda, Thomas T Korenberg, Julie R Trask, Barbara J de Jong, Pieter Reed, Randall R Simon, Melvin I Jenkins, Nancy A Copeland, Neal G |
description | Heterotrimeric guanine nucleotide binding proteins (G proteins) transduce extracellular signals received by transmembrane receptors to effector proteins. The multigene family of G protein α subunits, which interact with receptors and effectors, exhibit a high level of sequence diversity. In mammals, 15 Gα subunit genes can be grouped by sequence and functional similarities into four classes. We have determined the murine chromosomal locations of all 15 Gα subunit genes using an interspecific backcross derived from crosses of C57BI/6J and
Mus spretus
mice. These data, in combination with mapping studies in humans, have provided insight into the events responsible for generating the genetic diversity found in the mammalian α subunit genes and a framework for elucidating the role of the Gα subunits in disease. |
doi_str_mv | 10.1038/ng0592-85 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73537479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73537479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-71e1be4dabd987734ae89fff2055a035fbe8661bfd86013e24d90a39069a3af23</originalsourceid><addsrcrecordid>eNptkc9Kw0AQxhdRaq0efABxT4JCdDeb_ZObUmoVCl70HDbNbN2SbGp2V-hj-SI-k5GUevE0M3w_Pma-QeickltKmLpzK8LzNFH8AI0pz0RCJVWHfU8ETTLCxDE68X5NCM0yokZoRBlJ-2GM7mefbR2DbR1uDQ7vgBvdNLq22uE53nRtAOvw9xf2sYzOBtzEOtgVOMBGN7benqIjo2sPZ7s6QW-Ps9fpU7J4mT9PHxbJkkkREkmBlpBVuqxyJSXLNKjcGJMSzjVh3JSghKClqZQglEGaVTnRLCci10yblE3Q1eDb7_QRwYeisX4Jda0dtNEXknEmM5n34PUALrvW-w5Mselso7ttQUnxm1YxpFUo3rMXO9NYNlD9kUM8vX4z6L5X3Aq6Yt3GzvV3_mt2OcBOh9jB3mz_HPYDd9V9hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73537479</pqid></control><display><type>article</type><title>Evolution of the mammalian G protein α subunit multigene family</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Wilkie, Thomas M ; Gilbert, Debra J ; Olsen, Anne S ; Chen, Xiao-Ning ; Amatruda, Thomas T ; Korenberg, Julie R ; Trask, Barbara J ; de Jong, Pieter ; Reed, Randall R ; Simon, Melvin I ; Jenkins, Nancy A ; Copeland, Neal G</creator><creatorcontrib>Wilkie, Thomas M ; Gilbert, Debra J ; Olsen, Anne S ; Chen, Xiao-Ning ; Amatruda, Thomas T ; Korenberg, Julie R ; Trask, Barbara J ; de Jong, Pieter ; Reed, Randall R ; Simon, Melvin I ; Jenkins, Nancy A ; Copeland, Neal G</creatorcontrib><description>Heterotrimeric guanine nucleotide binding proteins (G proteins) transduce extracellular signals received by transmembrane receptors to effector proteins. The multigene family of G protein α subunits, which interact with receptors and effectors, exhibit a high level of sequence diversity. In mammals, 15 Gα subunit genes can be grouped by sequence and functional similarities into four classes. We have determined the murine chromosomal locations of all 15 Gα subunit genes using an interspecific backcross derived from crosses of C57BI/6J and
Mus spretus
mice. These data, in combination with mapping studies in humans, have provided insight into the events responsible for generating the genetic diversity found in the mammalian α subunit genes and a framework for elucidating the role of the Gα subunits in disease.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng0592-85</identifier><identifier>PMID: 1302014</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Agriculture ; Animal Genetics and Genomics ; Animals ; Base Sequence ; Biological Evolution ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Chromosome Mapping ; Crosses, Genetic ; DNA - genetics ; DNA Probes ; Female ; Gene Function ; Genetic Linkage ; GTP-Binding Proteins - genetics ; Human Genetics ; Humans ; Invertebrates - genetics ; Male ; Mice ; Molecular Sequence Data ; Multigene Family</subject><ispartof>Nature genetics, 1992-05, Vol.1 (2), p.85-91</ispartof><rights>Springer Nature America, Inc. 1992</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-71e1be4dabd987734ae89fff2055a035fbe8661bfd86013e24d90a39069a3af23</citedby><cites>FETCH-LOGICAL-c376t-71e1be4dabd987734ae89fff2055a035fbe8661bfd86013e24d90a39069a3af23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1302014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilkie, Thomas M</creatorcontrib><creatorcontrib>Gilbert, Debra J</creatorcontrib><creatorcontrib>Olsen, Anne S</creatorcontrib><creatorcontrib>Chen, Xiao-Ning</creatorcontrib><creatorcontrib>Amatruda, Thomas T</creatorcontrib><creatorcontrib>Korenberg, Julie R</creatorcontrib><creatorcontrib>Trask, Barbara J</creatorcontrib><creatorcontrib>de Jong, Pieter</creatorcontrib><creatorcontrib>Reed, Randall R</creatorcontrib><creatorcontrib>Simon, Melvin I</creatorcontrib><creatorcontrib>Jenkins, Nancy A</creatorcontrib><creatorcontrib>Copeland, Neal G</creatorcontrib><title>Evolution of the mammalian G protein α subunit multigene family</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Heterotrimeric guanine nucleotide binding proteins (G proteins) transduce extracellular signals received by transmembrane receptors to effector proteins. The multigene family of G protein α subunits, which interact with receptors and effectors, exhibit a high level of sequence diversity. In mammals, 15 Gα subunit genes can be grouped by sequence and functional similarities into four classes. We have determined the murine chromosomal locations of all 15 Gα subunit genes using an interspecific backcross derived from crosses of C57BI/6J and
Mus spretus
mice. These data, in combination with mapping studies in humans, have provided insight into the events responsible for generating the genetic diversity found in the mammalian α subunit genes and a framework for elucidating the role of the Gα subunits in disease.</description><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological Evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Chromosome Mapping</subject><subject>Crosses, Genetic</subject><subject>DNA - genetics</subject><subject>DNA Probes</subject><subject>Female</subject><subject>Gene Function</subject><subject>Genetic Linkage</subject><subject>GTP-Binding Proteins - genetics</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Invertebrates - genetics</subject><subject>Male</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc9Kw0AQxhdRaq0efABxT4JCdDeb_ZObUmoVCl70HDbNbN2SbGp2V-hj-SI-k5GUevE0M3w_Pma-QeickltKmLpzK8LzNFH8AI0pz0RCJVWHfU8ETTLCxDE68X5NCM0yokZoRBlJ-2GM7mefbR2DbR1uDQ7vgBvdNLq22uE53nRtAOvw9xf2sYzOBtzEOtgVOMBGN7benqIjo2sPZ7s6QW-Ps9fpU7J4mT9PHxbJkkkREkmBlpBVuqxyJSXLNKjcGJMSzjVh3JSghKClqZQglEGaVTnRLCci10yblE3Q1eDb7_QRwYeisX4Jda0dtNEXknEmM5n34PUALrvW-w5Mselso7ttQUnxm1YxpFUo3rMXO9NYNlD9kUM8vX4z6L5X3Aq6Yt3GzvV3_mt2OcBOh9jB3mz_HPYDd9V9hg</recordid><startdate>19920501</startdate><enddate>19920501</enddate><creator>Wilkie, Thomas M</creator><creator>Gilbert, Debra J</creator><creator>Olsen, Anne S</creator><creator>Chen, Xiao-Ning</creator><creator>Amatruda, Thomas T</creator><creator>Korenberg, Julie R</creator><creator>Trask, Barbara J</creator><creator>de Jong, Pieter</creator><creator>Reed, Randall R</creator><creator>Simon, Melvin I</creator><creator>Jenkins, Nancy A</creator><creator>Copeland, Neal G</creator><general>Nature Publishing Group US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19920501</creationdate><title>Evolution of the mammalian G protein α subunit multigene family</title><author>Wilkie, Thomas M ; Gilbert, Debra J ; Olsen, Anne S ; Chen, Xiao-Ning ; Amatruda, Thomas T ; Korenberg, Julie R ; Trask, Barbara J ; de Jong, Pieter ; Reed, Randall R ; Simon, Melvin I ; Jenkins, Nancy A ; Copeland, Neal G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-71e1be4dabd987734ae89fff2055a035fbe8661bfd86013e24d90a39069a3af23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological Evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Chromosome Mapping</topic><topic>Crosses, Genetic</topic><topic>DNA - genetics</topic><topic>DNA Probes</topic><topic>Female</topic><topic>Gene Function</topic><topic>Genetic Linkage</topic><topic>GTP-Binding Proteins - genetics</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Invertebrates - genetics</topic><topic>Male</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilkie, Thomas M</creatorcontrib><creatorcontrib>Gilbert, Debra J</creatorcontrib><creatorcontrib>Olsen, Anne S</creatorcontrib><creatorcontrib>Chen, Xiao-Ning</creatorcontrib><creatorcontrib>Amatruda, Thomas T</creatorcontrib><creatorcontrib>Korenberg, Julie R</creatorcontrib><creatorcontrib>Trask, Barbara J</creatorcontrib><creatorcontrib>de Jong, Pieter</creatorcontrib><creatorcontrib>Reed, Randall R</creatorcontrib><creatorcontrib>Simon, Melvin I</creatorcontrib><creatorcontrib>Jenkins, Nancy A</creatorcontrib><creatorcontrib>Copeland, Neal G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilkie, Thomas M</au><au>Gilbert, Debra J</au><au>Olsen, Anne S</au><au>Chen, Xiao-Ning</au><au>Amatruda, Thomas T</au><au>Korenberg, Julie R</au><au>Trask, Barbara J</au><au>de Jong, Pieter</au><au>Reed, Randall R</au><au>Simon, Melvin I</au><au>Jenkins, Nancy A</au><au>Copeland, Neal G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of the mammalian G protein α subunit multigene family</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>1992-05-01</date><risdate>1992</risdate><volume>1</volume><issue>2</issue><spage>85</spage><epage>91</epage><pages>85-91</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Heterotrimeric guanine nucleotide binding proteins (G proteins) transduce extracellular signals received by transmembrane receptors to effector proteins. The multigene family of G protein α subunits, which interact with receptors and effectors, exhibit a high level of sequence diversity. In mammals, 15 Gα subunit genes can be grouped by sequence and functional similarities into four classes. We have determined the murine chromosomal locations of all 15 Gα subunit genes using an interspecific backcross derived from crosses of C57BI/6J and
Mus spretus
mice. These data, in combination with mapping studies in humans, have provided insight into the events responsible for generating the genetic diversity found in the mammalian α subunit genes and a framework for elucidating the role of the Gα subunits in disease.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>1302014</pmid><doi>10.1038/ng0592-85</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 1992-05, Vol.1 (2), p.85-91 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_proquest_miscellaneous_73537479 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | Agriculture Animal Genetics and Genomics Animals Base Sequence Biological Evolution Biomedical and Life Sciences Biomedicine Cancer Research Chromosome Mapping Crosses, Genetic DNA - genetics DNA Probes Female Gene Function Genetic Linkage GTP-Binding Proteins - genetics Human Genetics Humans Invertebrates - genetics Male Mice Molecular Sequence Data Multigene Family |
title | Evolution of the mammalian G protein α subunit multigene family |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20the%20mammalian%20G%20protein%20%CE%B1%20subunit%20multigene%20family&rft.jtitle=Nature%20genetics&rft.au=Wilkie,%20Thomas%20M&rft.date=1992-05-01&rft.volume=1&rft.issue=2&rft.spage=85&rft.epage=91&rft.pages=85-91&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/ng0592-85&rft_dat=%3Cproquest_cross%3E73537479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73537479&rft_id=info:pmid/1302014&rfr_iscdi=true |