Structure–stability–function relationships of dendritic spines
Dendritic spines, which receive most of the excitatory synaptic input in the cerebral cortex, are heterogeneous with regard to their structure, stability and function. Spines with large heads are stable, express large numbers of AMPA-type glutamate receptors, and contribute to strong synaptic connec...
Gespeichert in:
Veröffentlicht in: | Trends in neurosciences (Regular ed.) 2003-07, Vol.26 (7), p.360-368 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 368 |
---|---|
container_issue | 7 |
container_start_page | 360 |
container_title | Trends in neurosciences (Regular ed.) |
container_volume | 26 |
creator | Kasai, Haruo Matsuzaki, Masanori Noguchi, Jun Yasumatsu, Nobuaki Nakahara, Hiroyuki |
description | Dendritic spines, which receive most of the excitatory synaptic input in the cerebral cortex, are heterogeneous with regard to their structure, stability and function. Spines with large heads are stable, express large numbers of AMPA-type glutamate receptors, and contribute to strong synaptic connections. By contrast, spines with small heads are motile and unstable and contribute to weak or silent synaptic connections. Their structure–stability–function relationships suggest that large and small spines are ‘memory spines’ and ‘learning spines’, respectively. Given that turnover of glutamate receptors is rapid, spine structure and the underlying organization of the actin cytoskeleton are likely to be major determinants of fast synaptic transmission and, therefore, are likely to provide a physical basis for memory in cortical neuronal networks. Characterization of supramolecular complexes responsible for synaptic memory and learning is key to the understanding of brain function and disease. |
doi_str_mv | 10.1016/S0166-2236(03)00162-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73524395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166223603001620</els_id><sourcerecordid>73524395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-9da7ea7599c19660b11d56d4aae89ba91fa636b2122e99a583ab6e08e4a5b1c83</originalsourceid><addsrcrecordid>eNqFkd1qFTEUhYMo9vToIygHQbEXo9nJJJNcFS3-QcGLKngX9mT2YMqcmWOSEXrXd_AN-yTN-aEFb3qTrMCXlZ21GHsB_B1w0O8vyqIrIaR-y-UJLydR8UdsAaYxFXDz6zFb3CFH7DilywLVBuqn7AiEUbyWYsE-XuQ4-zxHurn-lzK2YQj5quh-Hn0O07iKNOBWpN9hk1ZTv-po7GLIwa_SJoyUnrEnPQ6Jnh_2Jfv5-dOPs6_V-fcv384-nFde6SZXtsOGsFHWerBa8xagU7qrEcnYFi30qKVuBQhB1qIyEltN3FCNqgVv5JK92ftu4vRnppTdOiRPw4AjTXNyjVSillY9CIIx5ZEGCvjqP_BymuNYPuFEyRF0s3NTe8jHKaVIvdvEsMZ45YC7bRVuV4Xb5uy4dLsqiliylwfzuV1Td3_rkH0BXh8ATB6HPuLoQ7rnlDCCi-2Up3uOSrh_A0WXfKDRUxci-ey6KTwwyi18q6cD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218716795</pqid></control><display><type>article</type><title>Structure–stability–function relationships of dendritic spines</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Kasai, Haruo ; Matsuzaki, Masanori ; Noguchi, Jun ; Yasumatsu, Nobuaki ; Nakahara, Hiroyuki</creator><creatorcontrib>Kasai, Haruo ; Matsuzaki, Masanori ; Noguchi, Jun ; Yasumatsu, Nobuaki ; Nakahara, Hiroyuki</creatorcontrib><description>Dendritic spines, which receive most of the excitatory synaptic input in the cerebral cortex, are heterogeneous with regard to their structure, stability and function. Spines with large heads are stable, express large numbers of AMPA-type glutamate receptors, and contribute to strong synaptic connections. By contrast, spines with small heads are motile and unstable and contribute to weak or silent synaptic connections. Their structure–stability–function relationships suggest that large and small spines are ‘memory spines’ and ‘learning spines’, respectively. Given that turnover of glutamate receptors is rapid, spine structure and the underlying organization of the actin cytoskeleton are likely to be major determinants of fast synaptic transmission and, therefore, are likely to provide a physical basis for memory in cortical neuronal networks. Characterization of supramolecular complexes responsible for synaptic memory and learning is key to the understanding of brain function and disease.</description><identifier>ISSN: 0166-2236</identifier><identifier>EISSN: 1878-108X</identifier><identifier>DOI: 10.1016/S0166-2236(03)00162-0</identifier><identifier>PMID: 12850432</identifier><identifier>CODEN: TNSCDR</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Central nervous system ; Central neurotransmission. Neuromudulation. Pathways and receptors ; Cerebral Cortex - cytology ; Cerebral Cortex - physiology ; Cytoskeleton ; Dendrites - physiology ; Dendrites - ultrastructure ; Fundamental and applied biological sciences. Psychology ; Learning ; Memory ; Neurology ; Neurons - cytology ; Neurons - physiology ; Receptors, Glutamate - physiology ; Spine ; Structure-Activity Relationship ; Synaptic Transmission ; Vertebrates: nervous system and sense organs</subject><ispartof>Trends in neurosciences (Regular ed.), 2003-07, Vol.26 (7), p.360-368</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jul 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-9da7ea7599c19660b11d56d4aae89ba91fa636b2122e99a583ab6e08e4a5b1c83</citedby><cites>FETCH-LOGICAL-c567t-9da7ea7599c19660b11d56d4aae89ba91fa636b2122e99a583ab6e08e4a5b1c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166223603001620$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15282021$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12850432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasai, Haruo</creatorcontrib><creatorcontrib>Matsuzaki, Masanori</creatorcontrib><creatorcontrib>Noguchi, Jun</creatorcontrib><creatorcontrib>Yasumatsu, Nobuaki</creatorcontrib><creatorcontrib>Nakahara, Hiroyuki</creatorcontrib><title>Structure–stability–function relationships of dendritic spines</title><title>Trends in neurosciences (Regular ed.)</title><addtitle>Trends Neurosci</addtitle><description>Dendritic spines, which receive most of the excitatory synaptic input in the cerebral cortex, are heterogeneous with regard to their structure, stability and function. Spines with large heads are stable, express large numbers of AMPA-type glutamate receptors, and contribute to strong synaptic connections. By contrast, spines with small heads are motile and unstable and contribute to weak or silent synaptic connections. Their structure–stability–function relationships suggest that large and small spines are ‘memory spines’ and ‘learning spines’, respectively. Given that turnover of glutamate receptors is rapid, spine structure and the underlying organization of the actin cytoskeleton are likely to be major determinants of fast synaptic transmission and, therefore, are likely to provide a physical basis for memory in cortical neuronal networks. Characterization of supramolecular complexes responsible for synaptic memory and learning is key to the understanding of brain function and disease.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Central nervous system</subject><subject>Central neurotransmission. Neuromudulation. Pathways and receptors</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - physiology</subject><subject>Cytoskeleton</subject><subject>Dendrites - physiology</subject><subject>Dendrites - ultrastructure</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Learning</subject><subject>Memory</subject><subject>Neurology</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Receptors, Glutamate - physiology</subject><subject>Spine</subject><subject>Structure-Activity Relationship</subject><subject>Synaptic Transmission</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0166-2236</issn><issn>1878-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd1qFTEUhYMo9vToIygHQbEXo9nJJJNcFS3-QcGLKngX9mT2YMqcmWOSEXrXd_AN-yTN-aEFb3qTrMCXlZ21GHsB_B1w0O8vyqIrIaR-y-UJLydR8UdsAaYxFXDz6zFb3CFH7DilywLVBuqn7AiEUbyWYsE-XuQ4-zxHurn-lzK2YQj5quh-Hn0O07iKNOBWpN9hk1ZTv-po7GLIwa_SJoyUnrEnPQ6Jnh_2Jfv5-dOPs6_V-fcv384-nFde6SZXtsOGsFHWerBa8xagU7qrEcnYFi30qKVuBQhB1qIyEltN3FCNqgVv5JK92ftu4vRnppTdOiRPw4AjTXNyjVSillY9CIIx5ZEGCvjqP_BymuNYPuFEyRF0s3NTe8jHKaVIvdvEsMZ45YC7bRVuV4Xb5uy4dLsqiliylwfzuV1Td3_rkH0BXh8ATB6HPuLoQ7rnlDCCi-2Up3uOSrh_A0WXfKDRUxci-ey6KTwwyi18q6cD</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Kasai, Haruo</creator><creator>Matsuzaki, Masanori</creator><creator>Noguchi, Jun</creator><creator>Yasumatsu, Nobuaki</creator><creator>Nakahara, Hiroyuki</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030701</creationdate><title>Structure–stability–function relationships of dendritic spines</title><author>Kasai, Haruo ; Matsuzaki, Masanori ; Noguchi, Jun ; Yasumatsu, Nobuaki ; Nakahara, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-9da7ea7599c19660b11d56d4aae89ba91fa636b2122e99a583ab6e08e4a5b1c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Central nervous system</topic><topic>Central neurotransmission. Neuromudulation. Pathways and receptors</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - physiology</topic><topic>Cytoskeleton</topic><topic>Dendrites - physiology</topic><topic>Dendrites - ultrastructure</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Learning</topic><topic>Memory</topic><topic>Neurology</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Receptors, Glutamate - physiology</topic><topic>Spine</topic><topic>Structure-Activity Relationship</topic><topic>Synaptic Transmission</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasai, Haruo</creatorcontrib><creatorcontrib>Matsuzaki, Masanori</creatorcontrib><creatorcontrib>Noguchi, Jun</creatorcontrib><creatorcontrib>Yasumatsu, Nobuaki</creatorcontrib><creatorcontrib>Nakahara, Hiroyuki</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in neurosciences (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasai, Haruo</au><au>Matsuzaki, Masanori</au><au>Noguchi, Jun</au><au>Yasumatsu, Nobuaki</au><au>Nakahara, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure–stability–function relationships of dendritic spines</atitle><jtitle>Trends in neurosciences (Regular ed.)</jtitle><addtitle>Trends Neurosci</addtitle><date>2003-07-01</date><risdate>2003</risdate><volume>26</volume><issue>7</issue><spage>360</spage><epage>368</epage><pages>360-368</pages><issn>0166-2236</issn><eissn>1878-108X</eissn><coden>TNSCDR</coden><abstract>Dendritic spines, which receive most of the excitatory synaptic input in the cerebral cortex, are heterogeneous with regard to their structure, stability and function. Spines with large heads are stable, express large numbers of AMPA-type glutamate receptors, and contribute to strong synaptic connections. By contrast, spines with small heads are motile and unstable and contribute to weak or silent synaptic connections. Their structure–stability–function relationships suggest that large and small spines are ‘memory spines’ and ‘learning spines’, respectively. Given that turnover of glutamate receptors is rapid, spine structure and the underlying organization of the actin cytoskeleton are likely to be major determinants of fast synaptic transmission and, therefore, are likely to provide a physical basis for memory in cortical neuronal networks. Characterization of supramolecular complexes responsible for synaptic memory and learning is key to the understanding of brain function and disease.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>12850432</pmid><doi>10.1016/S0166-2236(03)00162-0</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-2236 |
ispartof | Trends in neurosciences (Regular ed.), 2003-07, Vol.26 (7), p.360-368 |
issn | 0166-2236 1878-108X |
language | eng |
recordid | cdi_proquest_miscellaneous_73524395 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Biological and medical sciences Central nervous system Central neurotransmission. Neuromudulation. Pathways and receptors Cerebral Cortex - cytology Cerebral Cortex - physiology Cytoskeleton Dendrites - physiology Dendrites - ultrastructure Fundamental and applied biological sciences. Psychology Learning Memory Neurology Neurons - cytology Neurons - physiology Receptors, Glutamate - physiology Spine Structure-Activity Relationship Synaptic Transmission Vertebrates: nervous system and sense organs |
title | Structure–stability–function relationships of dendritic spines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%E2%80%93stability%E2%80%93function%20relationships%20of%20dendritic%20spines&rft.jtitle=Trends%20in%20neurosciences%20(Regular%20ed.)&rft.au=Kasai,%20Haruo&rft.date=2003-07-01&rft.volume=26&rft.issue=7&rft.spage=360&rft.epage=368&rft.pages=360-368&rft.issn=0166-2236&rft.eissn=1878-108X&rft.coden=TNSCDR&rft_id=info:doi/10.1016/S0166-2236(03)00162-0&rft_dat=%3Cproquest_cross%3E73524395%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218716795&rft_id=info:pmid/12850432&rft_els_id=S0166223603001620&rfr_iscdi=true |