Structure–stability–function relationships of dendritic spines

Dendritic spines, which receive most of the excitatory synaptic input in the cerebral cortex, are heterogeneous with regard to their structure, stability and function. Spines with large heads are stable, express large numbers of AMPA-type glutamate receptors, and contribute to strong synaptic connec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in neurosciences (Regular ed.) 2003-07, Vol.26 (7), p.360-368
Hauptverfasser: Kasai, Haruo, Matsuzaki, Masanori, Noguchi, Jun, Yasumatsu, Nobuaki, Nakahara, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue 7
container_start_page 360
container_title Trends in neurosciences (Regular ed.)
container_volume 26
creator Kasai, Haruo
Matsuzaki, Masanori
Noguchi, Jun
Yasumatsu, Nobuaki
Nakahara, Hiroyuki
description Dendritic spines, which receive most of the excitatory synaptic input in the cerebral cortex, are heterogeneous with regard to their structure, stability and function. Spines with large heads are stable, express large numbers of AMPA-type glutamate receptors, and contribute to strong synaptic connections. By contrast, spines with small heads are motile and unstable and contribute to weak or silent synaptic connections. Their structure–stability–function relationships suggest that large and small spines are ‘memory spines’ and ‘learning spines’, respectively. Given that turnover of glutamate receptors is rapid, spine structure and the underlying organization of the actin cytoskeleton are likely to be major determinants of fast synaptic transmission and, therefore, are likely to provide a physical basis for memory in cortical neuronal networks. Characterization of supramolecular complexes responsible for synaptic memory and learning is key to the understanding of brain function and disease.
doi_str_mv 10.1016/S0166-2236(03)00162-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73524395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166223603001620</els_id><sourcerecordid>73524395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-9da7ea7599c19660b11d56d4aae89ba91fa636b2122e99a583ab6e08e4a5b1c83</originalsourceid><addsrcrecordid>eNqFkd1qFTEUhYMo9vToIygHQbEXo9nJJJNcFS3-QcGLKngX9mT2YMqcmWOSEXrXd_AN-yTN-aEFb3qTrMCXlZ21GHsB_B1w0O8vyqIrIaR-y-UJLydR8UdsAaYxFXDz6zFb3CFH7DilywLVBuqn7AiEUbyWYsE-XuQ4-zxHurn-lzK2YQj5quh-Hn0O07iKNOBWpN9hk1ZTv-po7GLIwa_SJoyUnrEnPQ6Jnh_2Jfv5-dOPs6_V-fcv384-nFde6SZXtsOGsFHWerBa8xagU7qrEcnYFi30qKVuBQhB1qIyEltN3FCNqgVv5JK92ftu4vRnppTdOiRPw4AjTXNyjVSillY9CIIx5ZEGCvjqP_BymuNYPuFEyRF0s3NTe8jHKaVIvdvEsMZ45YC7bRVuV4Xb5uy4dLsqiliylwfzuV1Td3_rkH0BXh8ATB6HPuLoQ7rnlDCCi-2Up3uOSrh_A0WXfKDRUxci-ey6KTwwyi18q6cD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218716795</pqid></control><display><type>article</type><title>Structure–stability–function relationships of dendritic spines</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Kasai, Haruo ; Matsuzaki, Masanori ; Noguchi, Jun ; Yasumatsu, Nobuaki ; Nakahara, Hiroyuki</creator><creatorcontrib>Kasai, Haruo ; Matsuzaki, Masanori ; Noguchi, Jun ; Yasumatsu, Nobuaki ; Nakahara, Hiroyuki</creatorcontrib><description>Dendritic spines, which receive most of the excitatory synaptic input in the cerebral cortex, are heterogeneous with regard to their structure, stability and function. Spines with large heads are stable, express large numbers of AMPA-type glutamate receptors, and contribute to strong synaptic connections. By contrast, spines with small heads are motile and unstable and contribute to weak or silent synaptic connections. Their structure–stability–function relationships suggest that large and small spines are ‘memory spines’ and ‘learning spines’, respectively. Given that turnover of glutamate receptors is rapid, spine structure and the underlying organization of the actin cytoskeleton are likely to be major determinants of fast synaptic transmission and, therefore, are likely to provide a physical basis for memory in cortical neuronal networks. Characterization of supramolecular complexes responsible for synaptic memory and learning is key to the understanding of brain function and disease.</description><identifier>ISSN: 0166-2236</identifier><identifier>EISSN: 1878-108X</identifier><identifier>DOI: 10.1016/S0166-2236(03)00162-0</identifier><identifier>PMID: 12850432</identifier><identifier>CODEN: TNSCDR</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Central nervous system ; Central neurotransmission. Neuromudulation. Pathways and receptors ; Cerebral Cortex - cytology ; Cerebral Cortex - physiology ; Cytoskeleton ; Dendrites - physiology ; Dendrites - ultrastructure ; Fundamental and applied biological sciences. Psychology ; Learning ; Memory ; Neurology ; Neurons - cytology ; Neurons - physiology ; Receptors, Glutamate - physiology ; Spine ; Structure-Activity Relationship ; Synaptic Transmission ; Vertebrates: nervous system and sense organs</subject><ispartof>Trends in neurosciences (Regular ed.), 2003-07, Vol.26 (7), p.360-368</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jul 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-9da7ea7599c19660b11d56d4aae89ba91fa636b2122e99a583ab6e08e4a5b1c83</citedby><cites>FETCH-LOGICAL-c567t-9da7ea7599c19660b11d56d4aae89ba91fa636b2122e99a583ab6e08e4a5b1c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166223603001620$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15282021$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12850432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasai, Haruo</creatorcontrib><creatorcontrib>Matsuzaki, Masanori</creatorcontrib><creatorcontrib>Noguchi, Jun</creatorcontrib><creatorcontrib>Yasumatsu, Nobuaki</creatorcontrib><creatorcontrib>Nakahara, Hiroyuki</creatorcontrib><title>Structure–stability–function relationships of dendritic spines</title><title>Trends in neurosciences (Regular ed.)</title><addtitle>Trends Neurosci</addtitle><description>Dendritic spines, which receive most of the excitatory synaptic input in the cerebral cortex, are heterogeneous with regard to their structure, stability and function. Spines with large heads are stable, express large numbers of AMPA-type glutamate receptors, and contribute to strong synaptic connections. By contrast, spines with small heads are motile and unstable and contribute to weak or silent synaptic connections. Their structure–stability–function relationships suggest that large and small spines are ‘memory spines’ and ‘learning spines’, respectively. Given that turnover of glutamate receptors is rapid, spine structure and the underlying organization of the actin cytoskeleton are likely to be major determinants of fast synaptic transmission and, therefore, are likely to provide a physical basis for memory in cortical neuronal networks. Characterization of supramolecular complexes responsible for synaptic memory and learning is key to the understanding of brain function and disease.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Central nervous system</subject><subject>Central neurotransmission. Neuromudulation. Pathways and receptors</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - physiology</subject><subject>Cytoskeleton</subject><subject>Dendrites - physiology</subject><subject>Dendrites - ultrastructure</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Learning</subject><subject>Memory</subject><subject>Neurology</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Receptors, Glutamate - physiology</subject><subject>Spine</subject><subject>Structure-Activity Relationship</subject><subject>Synaptic Transmission</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0166-2236</issn><issn>1878-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd1qFTEUhYMo9vToIygHQbEXo9nJJJNcFS3-QcGLKngX9mT2YMqcmWOSEXrXd_AN-yTN-aEFb3qTrMCXlZ21GHsB_B1w0O8vyqIrIaR-y-UJLydR8UdsAaYxFXDz6zFb3CFH7DilywLVBuqn7AiEUbyWYsE-XuQ4-zxHurn-lzK2YQj5quh-Hn0O07iKNOBWpN9hk1ZTv-po7GLIwa_SJoyUnrEnPQ6Jnh_2Jfv5-dOPs6_V-fcv384-nFde6SZXtsOGsFHWerBa8xagU7qrEcnYFi30qKVuBQhB1qIyEltN3FCNqgVv5JK92ftu4vRnppTdOiRPw4AjTXNyjVSillY9CIIx5ZEGCvjqP_BymuNYPuFEyRF0s3NTe8jHKaVIvdvEsMZ45YC7bRVuV4Xb5uy4dLsqiliylwfzuV1Td3_rkH0BXh8ATB6HPuLoQ7rnlDCCi-2Up3uOSrh_A0WXfKDRUxci-ey6KTwwyi18q6cD</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Kasai, Haruo</creator><creator>Matsuzaki, Masanori</creator><creator>Noguchi, Jun</creator><creator>Yasumatsu, Nobuaki</creator><creator>Nakahara, Hiroyuki</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030701</creationdate><title>Structure–stability–function relationships of dendritic spines</title><author>Kasai, Haruo ; Matsuzaki, Masanori ; Noguchi, Jun ; Yasumatsu, Nobuaki ; Nakahara, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-9da7ea7599c19660b11d56d4aae89ba91fa636b2122e99a583ab6e08e4a5b1c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Central nervous system</topic><topic>Central neurotransmission. Neuromudulation. Pathways and receptors</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - physiology</topic><topic>Cytoskeleton</topic><topic>Dendrites - physiology</topic><topic>Dendrites - ultrastructure</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Learning</topic><topic>Memory</topic><topic>Neurology</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Receptors, Glutamate - physiology</topic><topic>Spine</topic><topic>Structure-Activity Relationship</topic><topic>Synaptic Transmission</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasai, Haruo</creatorcontrib><creatorcontrib>Matsuzaki, Masanori</creatorcontrib><creatorcontrib>Noguchi, Jun</creatorcontrib><creatorcontrib>Yasumatsu, Nobuaki</creatorcontrib><creatorcontrib>Nakahara, Hiroyuki</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in neurosciences (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasai, Haruo</au><au>Matsuzaki, Masanori</au><au>Noguchi, Jun</au><au>Yasumatsu, Nobuaki</au><au>Nakahara, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure–stability–function relationships of dendritic spines</atitle><jtitle>Trends in neurosciences (Regular ed.)</jtitle><addtitle>Trends Neurosci</addtitle><date>2003-07-01</date><risdate>2003</risdate><volume>26</volume><issue>7</issue><spage>360</spage><epage>368</epage><pages>360-368</pages><issn>0166-2236</issn><eissn>1878-108X</eissn><coden>TNSCDR</coden><abstract>Dendritic spines, which receive most of the excitatory synaptic input in the cerebral cortex, are heterogeneous with regard to their structure, stability and function. Spines with large heads are stable, express large numbers of AMPA-type glutamate receptors, and contribute to strong synaptic connections. By contrast, spines with small heads are motile and unstable and contribute to weak or silent synaptic connections. Their structure–stability–function relationships suggest that large and small spines are ‘memory spines’ and ‘learning spines’, respectively. Given that turnover of glutamate receptors is rapid, spine structure and the underlying organization of the actin cytoskeleton are likely to be major determinants of fast synaptic transmission and, therefore, are likely to provide a physical basis for memory in cortical neuronal networks. Characterization of supramolecular complexes responsible for synaptic memory and learning is key to the understanding of brain function and disease.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>12850432</pmid><doi>10.1016/S0166-2236(03)00162-0</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-2236
ispartof Trends in neurosciences (Regular ed.), 2003-07, Vol.26 (7), p.360-368
issn 0166-2236
1878-108X
language eng
recordid cdi_proquest_miscellaneous_73524395
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Biological and medical sciences
Central nervous system
Central neurotransmission. Neuromudulation. Pathways and receptors
Cerebral Cortex - cytology
Cerebral Cortex - physiology
Cytoskeleton
Dendrites - physiology
Dendrites - ultrastructure
Fundamental and applied biological sciences. Psychology
Learning
Memory
Neurology
Neurons - cytology
Neurons - physiology
Receptors, Glutamate - physiology
Spine
Structure-Activity Relationship
Synaptic Transmission
Vertebrates: nervous system and sense organs
title Structure–stability–function relationships of dendritic spines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%E2%80%93stability%E2%80%93function%20relationships%20of%20dendritic%20spines&rft.jtitle=Trends%20in%20neurosciences%20(Regular%20ed.)&rft.au=Kasai,%20Haruo&rft.date=2003-07-01&rft.volume=26&rft.issue=7&rft.spage=360&rft.epage=368&rft.pages=360-368&rft.issn=0166-2236&rft.eissn=1878-108X&rft.coden=TNSCDR&rft_id=info:doi/10.1016/S0166-2236(03)00162-0&rft_dat=%3Cproquest_cross%3E73524395%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218716795&rft_id=info:pmid/12850432&rft_els_id=S0166223603001620&rfr_iscdi=true