Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin

With recent progress in neuroscience and stem-cell research, neural transplantation has emerged as a promising therapy for treating CNS diseases. The success of transplantation has been limited, however, by the restricted ability of neural implants to survive and establish neuronal connections with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2003-08, Vol.6 (8), p.863-868
Hauptverfasser: Kinouchi, Reiko, Takeda, Masumi, Yang, Liu, Wilhelmsson, Ulrika, Lundkvist, Andrea, Pekny, Milos, Chen, Dong Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 868
container_issue 8
container_start_page 863
container_title Nature neuroscience
container_volume 6
creator Kinouchi, Reiko
Takeda, Masumi
Yang, Liu
Wilhelmsson, Ulrika
Lundkvist, Andrea
Pekny, Milos
Chen, Dong Feng
description With recent progress in neuroscience and stem-cell research, neural transplantation has emerged as a promising therapy for treating CNS diseases. The success of transplantation has been limited, however, by the restricted ability of neural implants to survive and establish neuronal connections with the host. Little is known about the mechanisms responsible for this failure. Neural implantation triggers reactive gliosis, a process accompanied by upregulation of intermediate filaments in astrocytes and formation of astroglial scar tissue. Here we show that the retinas of adult mice deficient in glial fibrillary acidic protein and vimentin, and consequently lacking intermediate filaments in reactive astrocytes and Müller cells, provide a permissive environment for grafted neurons to migrate and extend neurites. The transplanted cells integrated robustly into the host retina with distinct neuronal identity and appropriate neuronal projections. Our results indicate an essential role for reactive astroglial cells in preventing neural graft integration after transplantation.
doi_str_mv 10.1038/nn1088
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_73516723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185558653</galeid><sourcerecordid>A185558653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-6e629dc4a20d621a65a2b9e08cc31c6dcb744bc9016d4751f2d5d35d044279693</originalsourceid><addsrcrecordid>eNqFkU9rFTEUxYMotlb9CDK4UFxMzf9klo9ia6GgVF24CpnkziNlJnkmGdFvbx7vQWk3kkXCvb8c7j0HodcEnxPM9McYCdb6CTolgsueKCqftjceVC-pkCfoRSl3GGMl9PAcnRCquWBUn6Kft2lcS-0irNnOXYgVttnWkGI35bR0GWqIrVGzjWU321hLg7olOOg8TMEFiHVfubrcfO1s9N3vsLRSiC_Rs8nOBV4d7zP04_LT94vP_c2Xq-uLzU3vBOa1lyDp4B23FHtJiZXC0nEArJ1jxEnvRsX56AZMpOdKkIl64ZnwmHOqBjmwM_TuoLvL6dcKpZolFAdzmxXSWoxigkhF2X9BojVhUu_Bt4_Au7Tm5kIxlGGuBiJkg84P0NbOYEKcUrPIteOhmZNi86bVN0QLIbQUe9UPDz40psKfurVrKeb62-1D9jiqy6mUDJPZ5bDY_NcQbPZ5m0PeDXxzHHUdF_D32DHgBrw_AKW14hby_S6PpP4Bfpmvzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230479156</pqid></control><display><type>article</type><title>Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Kinouchi, Reiko ; Takeda, Masumi ; Yang, Liu ; Wilhelmsson, Ulrika ; Lundkvist, Andrea ; Pekny, Milos ; Chen, Dong Feng</creator><creatorcontrib>Kinouchi, Reiko ; Takeda, Masumi ; Yang, Liu ; Wilhelmsson, Ulrika ; Lundkvist, Andrea ; Pekny, Milos ; Chen, Dong Feng</creatorcontrib><description>With recent progress in neuroscience and stem-cell research, neural transplantation has emerged as a promising therapy for treating CNS diseases. The success of transplantation has been limited, however, by the restricted ability of neural implants to survive and establish neuronal connections with the host. Little is known about the mechanisms responsible for this failure. Neural implantation triggers reactive gliosis, a process accompanied by upregulation of intermediate filaments in astrocytes and formation of astroglial scar tissue. Here we show that the retinas of adult mice deficient in glial fibrillary acidic protein and vimentin, and consequently lacking intermediate filaments in reactive astrocytes and Müller cells, provide a permissive environment for grafted neurons to migrate and extend neurites. The transplanted cells integrated robustly into the host retina with distinct neuronal identity and appropriate neuronal projections. Our results indicate an essential role for reactive astroglial cells in preventing neural graft integration after transplantation.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn1088</identifier><identifier>PMID: 12845328</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Brain research ; Cell Movement ; Cells ; Glial Fibrillary Acidic Protein - deficiency ; Methods ; Mice ; Mice, Knockout ; Neurobiology ; Neuroglia ; Neurons - physiology ; Neurons - transplantation ; Neurosciences ; Ophthalmology ; Properties ; Proteins ; Retina ; Retina - pathology ; Retina - physiopathology ; Retina - surgery ; Stem cells ; Transplantation ; Vimentin - deficiency</subject><ispartof>Nature neuroscience, 2003-08, Vol.6 (8), p.863-868</ispartof><rights>Springer Nature America, Inc. 2003</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-6e629dc4a20d621a65a2b9e08cc31c6dcb744bc9016d4751f2d5d35d044279693</citedby><cites>FETCH-LOGICAL-c504t-6e629dc4a20d621a65a2b9e08cc31c6dcb744bc9016d4751f2d5d35d044279693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn1088$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn1088$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12845328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kinouchi, Reiko</creatorcontrib><creatorcontrib>Takeda, Masumi</creatorcontrib><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Wilhelmsson, Ulrika</creatorcontrib><creatorcontrib>Lundkvist, Andrea</creatorcontrib><creatorcontrib>Pekny, Milos</creatorcontrib><creatorcontrib>Chen, Dong Feng</creatorcontrib><title>Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>With recent progress in neuroscience and stem-cell research, neural transplantation has emerged as a promising therapy for treating CNS diseases. The success of transplantation has been limited, however, by the restricted ability of neural implants to survive and establish neuronal connections with the host. Little is known about the mechanisms responsible for this failure. Neural implantation triggers reactive gliosis, a process accompanied by upregulation of intermediate filaments in astrocytes and formation of astroglial scar tissue. Here we show that the retinas of adult mice deficient in glial fibrillary acidic protein and vimentin, and consequently lacking intermediate filaments in reactive astrocytes and Müller cells, provide a permissive environment for grafted neurons to migrate and extend neurites. The transplanted cells integrated robustly into the host retina with distinct neuronal identity and appropriate neuronal projections. Our results indicate an essential role for reactive astroglial cells in preventing neural graft integration after transplantation.</description><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain research</subject><subject>Cell Movement</subject><subject>Cells</subject><subject>Glial Fibrillary Acidic Protein - deficiency</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Neurobiology</subject><subject>Neuroglia</subject><subject>Neurons - physiology</subject><subject>Neurons - transplantation</subject><subject>Neurosciences</subject><subject>Ophthalmology</subject><subject>Properties</subject><subject>Proteins</subject><subject>Retina</subject><subject>Retina - pathology</subject><subject>Retina - physiopathology</subject><subject>Retina - surgery</subject><subject>Stem cells</subject><subject>Transplantation</subject><subject>Vimentin - deficiency</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU9rFTEUxYMotlb9CDK4UFxMzf9klo9ia6GgVF24CpnkziNlJnkmGdFvbx7vQWk3kkXCvb8c7j0HodcEnxPM9McYCdb6CTolgsueKCqftjceVC-pkCfoRSl3GGMl9PAcnRCquWBUn6Kft2lcS-0irNnOXYgVttnWkGI35bR0GWqIrVGzjWU321hLg7olOOg8TMEFiHVfubrcfO1s9N3vsLRSiC_Rs8nOBV4d7zP04_LT94vP_c2Xq-uLzU3vBOa1lyDp4B23FHtJiZXC0nEArJ1jxEnvRsX56AZMpOdKkIl64ZnwmHOqBjmwM_TuoLvL6dcKpZolFAdzmxXSWoxigkhF2X9BojVhUu_Bt4_Au7Tm5kIxlGGuBiJkg84P0NbOYEKcUrPIteOhmZNi86bVN0QLIbQUe9UPDz40psKfurVrKeb62-1D9jiqy6mUDJPZ5bDY_NcQbPZ5m0PeDXxzHHUdF_D32DHgBrw_AKW14hby_S6PpP4Bfpmvzw</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Kinouchi, Reiko</creator><creator>Takeda, Masumi</creator><creator>Yang, Liu</creator><creator>Wilhelmsson, Ulrika</creator><creator>Lundkvist, Andrea</creator><creator>Pekny, Milos</creator><creator>Chen, Dong Feng</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20030801</creationdate><title>Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin</title><author>Kinouchi, Reiko ; Takeda, Masumi ; Yang, Liu ; Wilhelmsson, Ulrika ; Lundkvist, Andrea ; Pekny, Milos ; Chen, Dong Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-6e629dc4a20d621a65a2b9e08cc31c6dcb744bc9016d4751f2d5d35d044279693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain research</topic><topic>Cell Movement</topic><topic>Cells</topic><topic>Glial Fibrillary Acidic Protein - deficiency</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Neurobiology</topic><topic>Neuroglia</topic><topic>Neurons - physiology</topic><topic>Neurons - transplantation</topic><topic>Neurosciences</topic><topic>Ophthalmology</topic><topic>Properties</topic><topic>Proteins</topic><topic>Retina</topic><topic>Retina - pathology</topic><topic>Retina - physiopathology</topic><topic>Retina - surgery</topic><topic>Stem cells</topic><topic>Transplantation</topic><topic>Vimentin - deficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinouchi, Reiko</creatorcontrib><creatorcontrib>Takeda, Masumi</creatorcontrib><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Wilhelmsson, Ulrika</creatorcontrib><creatorcontrib>Lundkvist, Andrea</creatorcontrib><creatorcontrib>Pekny, Milos</creatorcontrib><creatorcontrib>Chen, Dong Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinouchi, Reiko</au><au>Takeda, Masumi</au><au>Yang, Liu</au><au>Wilhelmsson, Ulrika</au><au>Lundkvist, Andrea</au><au>Pekny, Milos</au><au>Chen, Dong Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2003-08-01</date><risdate>2003</risdate><volume>6</volume><issue>8</issue><spage>863</spage><epage>868</epage><pages>863-868</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>With recent progress in neuroscience and stem-cell research, neural transplantation has emerged as a promising therapy for treating CNS diseases. The success of transplantation has been limited, however, by the restricted ability of neural implants to survive and establish neuronal connections with the host. Little is known about the mechanisms responsible for this failure. Neural implantation triggers reactive gliosis, a process accompanied by upregulation of intermediate filaments in astrocytes and formation of astroglial scar tissue. Here we show that the retinas of adult mice deficient in glial fibrillary acidic protein and vimentin, and consequently lacking intermediate filaments in reactive astrocytes and Müller cells, provide a permissive environment for grafted neurons to migrate and extend neurites. The transplanted cells integrated robustly into the host retina with distinct neuronal identity and appropriate neuronal projections. Our results indicate an essential role for reactive astroglial cells in preventing neural graft integration after transplantation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>12845328</pmid><doi>10.1038/nn1088</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2003-08, Vol.6 (8), p.863-868
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_miscellaneous_73516723
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects Animal Genetics and Genomics
Animals
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Brain research
Cell Movement
Cells
Glial Fibrillary Acidic Protein - deficiency
Methods
Mice
Mice, Knockout
Neurobiology
Neuroglia
Neurons - physiology
Neurons - transplantation
Neurosciences
Ophthalmology
Properties
Proteins
Retina
Retina - pathology
Retina - physiopathology
Retina - surgery
Stem cells
Transplantation
Vimentin - deficiency
title Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20neural%20integration%20from%20retinal%20transplants%20in%20mice%20deficient%20in%20GFAP%20and%20vimentin&rft.jtitle=Nature%20neuroscience&rft.au=Kinouchi,%20Reiko&rft.date=2003-08-01&rft.volume=6&rft.issue=8&rft.spage=863&rft.epage=868&rft.pages=863-868&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn1088&rft_dat=%3Cgale_proqu%3EA185558653%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230479156&rft_id=info:pmid/12845328&rft_galeid=A185558653&rfr_iscdi=true