Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin
With recent progress in neuroscience and stem-cell research, neural transplantation has emerged as a promising therapy for treating CNS diseases. The success of transplantation has been limited, however, by the restricted ability of neural implants to survive and establish neuronal connections with...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2003-08, Vol.6 (8), p.863-868 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 868 |
---|---|
container_issue | 8 |
container_start_page | 863 |
container_title | Nature neuroscience |
container_volume | 6 |
creator | Kinouchi, Reiko Takeda, Masumi Yang, Liu Wilhelmsson, Ulrika Lundkvist, Andrea Pekny, Milos Chen, Dong Feng |
description | With recent progress in neuroscience and stem-cell research, neural transplantation has emerged as a promising therapy for treating CNS diseases. The success of transplantation has been limited, however, by the restricted ability of neural implants to survive and establish neuronal connections with the host. Little is known about the mechanisms responsible for this failure. Neural implantation triggers reactive gliosis, a process accompanied by upregulation of intermediate filaments in astrocytes and formation of astroglial scar tissue. Here we show that the retinas of adult mice deficient in glial fibrillary acidic protein and vimentin, and consequently lacking intermediate filaments in reactive astrocytes and Müller cells, provide a permissive environment for grafted neurons to migrate and extend neurites. The transplanted cells integrated robustly into the host retina with distinct neuronal identity and appropriate neuronal projections. Our results indicate an essential role for reactive astroglial cells in preventing neural graft integration after transplantation. |
doi_str_mv | 10.1038/nn1088 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_73516723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185558653</galeid><sourcerecordid>A185558653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-6e629dc4a20d621a65a2b9e08cc31c6dcb744bc9016d4751f2d5d35d044279693</originalsourceid><addsrcrecordid>eNqFkU9rFTEUxYMotlb9CDK4UFxMzf9klo9ia6GgVF24CpnkziNlJnkmGdFvbx7vQWk3kkXCvb8c7j0HodcEnxPM9McYCdb6CTolgsueKCqftjceVC-pkCfoRSl3GGMl9PAcnRCquWBUn6Kft2lcS-0irNnOXYgVttnWkGI35bR0GWqIrVGzjWU321hLg7olOOg8TMEFiHVfubrcfO1s9N3vsLRSiC_Rs8nOBV4d7zP04_LT94vP_c2Xq-uLzU3vBOa1lyDp4B23FHtJiZXC0nEArJ1jxEnvRsX56AZMpOdKkIl64ZnwmHOqBjmwM_TuoLvL6dcKpZolFAdzmxXSWoxigkhF2X9BojVhUu_Bt4_Au7Tm5kIxlGGuBiJkg84P0NbOYEKcUrPIteOhmZNi86bVN0QLIbQUe9UPDz40psKfurVrKeb62-1D9jiqy6mUDJPZ5bDY_NcQbPZ5m0PeDXxzHHUdF_D32DHgBrw_AKW14hby_S6PpP4Bfpmvzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230479156</pqid></control><display><type>article</type><title>Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Kinouchi, Reiko ; Takeda, Masumi ; Yang, Liu ; Wilhelmsson, Ulrika ; Lundkvist, Andrea ; Pekny, Milos ; Chen, Dong Feng</creator><creatorcontrib>Kinouchi, Reiko ; Takeda, Masumi ; Yang, Liu ; Wilhelmsson, Ulrika ; Lundkvist, Andrea ; Pekny, Milos ; Chen, Dong Feng</creatorcontrib><description>With recent progress in neuroscience and stem-cell research, neural transplantation has emerged as a promising therapy for treating CNS diseases. The success of transplantation has been limited, however, by the restricted ability of neural implants to survive and establish neuronal connections with the host. Little is known about the mechanisms responsible for this failure. Neural implantation triggers reactive gliosis, a process accompanied by upregulation of intermediate filaments in astrocytes and formation of astroglial scar tissue. Here we show that the retinas of adult mice deficient in glial fibrillary acidic protein and vimentin, and consequently lacking intermediate filaments in reactive astrocytes and Müller cells, provide a permissive environment for grafted neurons to migrate and extend neurites. The transplanted cells integrated robustly into the host retina with distinct neuronal identity and appropriate neuronal projections. Our results indicate an essential role for reactive astroglial cells in preventing neural graft integration after transplantation.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn1088</identifier><identifier>PMID: 12845328</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Brain research ; Cell Movement ; Cells ; Glial Fibrillary Acidic Protein - deficiency ; Methods ; Mice ; Mice, Knockout ; Neurobiology ; Neuroglia ; Neurons - physiology ; Neurons - transplantation ; Neurosciences ; Ophthalmology ; Properties ; Proteins ; Retina ; Retina - pathology ; Retina - physiopathology ; Retina - surgery ; Stem cells ; Transplantation ; Vimentin - deficiency</subject><ispartof>Nature neuroscience, 2003-08, Vol.6 (8), p.863-868</ispartof><rights>Springer Nature America, Inc. 2003</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-6e629dc4a20d621a65a2b9e08cc31c6dcb744bc9016d4751f2d5d35d044279693</citedby><cites>FETCH-LOGICAL-c504t-6e629dc4a20d621a65a2b9e08cc31c6dcb744bc9016d4751f2d5d35d044279693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn1088$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn1088$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12845328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kinouchi, Reiko</creatorcontrib><creatorcontrib>Takeda, Masumi</creatorcontrib><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Wilhelmsson, Ulrika</creatorcontrib><creatorcontrib>Lundkvist, Andrea</creatorcontrib><creatorcontrib>Pekny, Milos</creatorcontrib><creatorcontrib>Chen, Dong Feng</creatorcontrib><title>Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>With recent progress in neuroscience and stem-cell research, neural transplantation has emerged as a promising therapy for treating CNS diseases. The success of transplantation has been limited, however, by the restricted ability of neural implants to survive and establish neuronal connections with the host. Little is known about the mechanisms responsible for this failure. Neural implantation triggers reactive gliosis, a process accompanied by upregulation of intermediate filaments in astrocytes and formation of astroglial scar tissue. Here we show that the retinas of adult mice deficient in glial fibrillary acidic protein and vimentin, and consequently lacking intermediate filaments in reactive astrocytes and Müller cells, provide a permissive environment for grafted neurons to migrate and extend neurites. The transplanted cells integrated robustly into the host retina with distinct neuronal identity and appropriate neuronal projections. Our results indicate an essential role for reactive astroglial cells in preventing neural graft integration after transplantation.</description><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain research</subject><subject>Cell Movement</subject><subject>Cells</subject><subject>Glial Fibrillary Acidic Protein - deficiency</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Neurobiology</subject><subject>Neuroglia</subject><subject>Neurons - physiology</subject><subject>Neurons - transplantation</subject><subject>Neurosciences</subject><subject>Ophthalmology</subject><subject>Properties</subject><subject>Proteins</subject><subject>Retina</subject><subject>Retina - pathology</subject><subject>Retina - physiopathology</subject><subject>Retina - surgery</subject><subject>Stem cells</subject><subject>Transplantation</subject><subject>Vimentin - deficiency</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU9rFTEUxYMotlb9CDK4UFxMzf9klo9ia6GgVF24CpnkziNlJnkmGdFvbx7vQWk3kkXCvb8c7j0HodcEnxPM9McYCdb6CTolgsueKCqftjceVC-pkCfoRSl3GGMl9PAcnRCquWBUn6Kft2lcS-0irNnOXYgVttnWkGI35bR0GWqIrVGzjWU321hLg7olOOg8TMEFiHVfubrcfO1s9N3vsLRSiC_Rs8nOBV4d7zP04_LT94vP_c2Xq-uLzU3vBOa1lyDp4B23FHtJiZXC0nEArJ1jxEnvRsX56AZMpOdKkIl64ZnwmHOqBjmwM_TuoLvL6dcKpZolFAdzmxXSWoxigkhF2X9BojVhUu_Bt4_Au7Tm5kIxlGGuBiJkg84P0NbOYEKcUrPIteOhmZNi86bVN0QLIbQUe9UPDz40psKfurVrKeb62-1D9jiqy6mUDJPZ5bDY_NcQbPZ5m0PeDXxzHHUdF_D32DHgBrw_AKW14hby_S6PpP4Bfpmvzw</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Kinouchi, Reiko</creator><creator>Takeda, Masumi</creator><creator>Yang, Liu</creator><creator>Wilhelmsson, Ulrika</creator><creator>Lundkvist, Andrea</creator><creator>Pekny, Milos</creator><creator>Chen, Dong Feng</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20030801</creationdate><title>Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin</title><author>Kinouchi, Reiko ; Takeda, Masumi ; Yang, Liu ; Wilhelmsson, Ulrika ; Lundkvist, Andrea ; Pekny, Milos ; Chen, Dong Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-6e629dc4a20d621a65a2b9e08cc31c6dcb744bc9016d4751f2d5d35d044279693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain research</topic><topic>Cell Movement</topic><topic>Cells</topic><topic>Glial Fibrillary Acidic Protein - deficiency</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Neurobiology</topic><topic>Neuroglia</topic><topic>Neurons - physiology</topic><topic>Neurons - transplantation</topic><topic>Neurosciences</topic><topic>Ophthalmology</topic><topic>Properties</topic><topic>Proteins</topic><topic>Retina</topic><topic>Retina - pathology</topic><topic>Retina - physiopathology</topic><topic>Retina - surgery</topic><topic>Stem cells</topic><topic>Transplantation</topic><topic>Vimentin - deficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinouchi, Reiko</creatorcontrib><creatorcontrib>Takeda, Masumi</creatorcontrib><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Wilhelmsson, Ulrika</creatorcontrib><creatorcontrib>Lundkvist, Andrea</creatorcontrib><creatorcontrib>Pekny, Milos</creatorcontrib><creatorcontrib>Chen, Dong Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinouchi, Reiko</au><au>Takeda, Masumi</au><au>Yang, Liu</au><au>Wilhelmsson, Ulrika</au><au>Lundkvist, Andrea</au><au>Pekny, Milos</au><au>Chen, Dong Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2003-08-01</date><risdate>2003</risdate><volume>6</volume><issue>8</issue><spage>863</spage><epage>868</epage><pages>863-868</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>With recent progress in neuroscience and stem-cell research, neural transplantation has emerged as a promising therapy for treating CNS diseases. The success of transplantation has been limited, however, by the restricted ability of neural implants to survive and establish neuronal connections with the host. Little is known about the mechanisms responsible for this failure. Neural implantation triggers reactive gliosis, a process accompanied by upregulation of intermediate filaments in astrocytes and formation of astroglial scar tissue. Here we show that the retinas of adult mice deficient in glial fibrillary acidic protein and vimentin, and consequently lacking intermediate filaments in reactive astrocytes and Müller cells, provide a permissive environment for grafted neurons to migrate and extend neurites. The transplanted cells integrated robustly into the host retina with distinct neuronal identity and appropriate neuronal projections. Our results indicate an essential role for reactive astroglial cells in preventing neural graft integration after transplantation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>12845328</pmid><doi>10.1038/nn1088</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2003-08, Vol.6 (8), p.863-868 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_proquest_miscellaneous_73516723 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature |
subjects | Animal Genetics and Genomics Animals Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Brain research Cell Movement Cells Glial Fibrillary Acidic Protein - deficiency Methods Mice Mice, Knockout Neurobiology Neuroglia Neurons - physiology Neurons - transplantation Neurosciences Ophthalmology Properties Proteins Retina Retina - pathology Retina - physiopathology Retina - surgery Stem cells Transplantation Vimentin - deficiency |
title | Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20neural%20integration%20from%20retinal%20transplants%20in%20mice%20deficient%20in%20GFAP%20and%20vimentin&rft.jtitle=Nature%20neuroscience&rft.au=Kinouchi,%20Reiko&rft.date=2003-08-01&rft.volume=6&rft.issue=8&rft.spage=863&rft.epage=868&rft.pages=863-868&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn1088&rft_dat=%3Cgale_proqu%3EA185558653%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230479156&rft_id=info:pmid/12845328&rft_galeid=A185558653&rfr_iscdi=true |