Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes
In magnetic resonance electrical impedance tomography (MREIT), we try to reconstruct a cross-sectional resistivity (or conductivity) image of a subject. When we inject a current through surface electrodes, it generates a magnetic field. Using a magnetic resonance imaging (MRI) scanner, we can obtain...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2003-07, Vol.48 (13), p.1971-1986 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1986 |
---|---|
container_issue | 13 |
container_start_page | 1971 |
container_title | Physics in medicine & biology |
container_volume | 48 |
creator | Lee, Byung Il Oh, Suk Hoon Woo, Eung Je Lee, Soo Yeol Cho, Min Hyoung Kwon, Ohin Seo, Jin Keun Lee, June-Yub Baek, Woon Sik |
description | In magnetic resonance electrical impedance tomography (MREIT), we try to reconstruct a cross-sectional resistivity (or conductivity) image of a subject. When we inject a current through surface electrodes, it generates a magnetic field. Using a magnetic resonance imaging (MRI) scanner, we can obtain the induced magnetic flux density from MR phase images of the subject. We use recessed electrodes to avoid undesirable artefacts near electrodes in measuring magnetic flux densities. An MREIT image reconstruction algorithm produces cross-sectional resistivity images utilizing the measured internal magnetic flux density in addition to boundary voltage data. In order to develop such an image reconstruction algorithm, we need a three-dimensional forward solver. Given injection currents as boundary conditions, the forward solver described in this paper computes voltage and current density distributions using the finite element method (FEM). Then, it calculates the magnetic flux density within the subject using the Biot-Savart law and FEM. The performance of the forward solver is analysed and found to be enough for use in MREIT for resistivity image reconstructions and also experimental designs and validations. The forward solver may find other applications where one needs to compute voltage, current density and magnetic flux density distributions all within a volume conductor. |
doi_str_mv | 10.1088/0031-9155/48/13/309 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_73508756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73508756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-dd874960bc35f15c6cbcc75389349ddac89b87c0f2b1d6131f805cea7fbc97473</originalsourceid><addsrcrecordid>eNp9kVGL1DAUhYMo7rj6CwTJi6JCd5KmaZNHWVZdWBFkfA5pcjsbaZua21Hmj_h7TZ2y-6D4FLjnOyeXcwl5ztkFZ0ptGRO80FzKbaW2XGwF0w_IhouaF7Ws2UOyuSPOyBPEb4xxrsrqMTnjpVKVLvWG_NrdJoDChwFGDHG0Pe1i-mmTpxj7H5CoHT0NM9IJUlYGOzrIM9sfMeDC0sHuR5iDowkwByw69ODmFFxOC8ME_s9wjkPcJzvdHunrT1-urndv6AHDuM8-B4jgV1v0gE_Jo872CM_W95x8fX-1u_xY3Hz-cH357qZwFZNz4b1qKl2z1gnZcelq1zrXSKG0qLT31indqsaxrmy5r7ngnWLSgW261ummasQ5eXXKnVL8fgCczRDQQd_bEeIBTSMkU42sMyhOoEsRMUFnphQGm46GM7Ocwyxlm6VsUynDhcnnyK4Xa_yhHcDfe9b-M_ByBSzmtrqUmwp4z1VaqlKXmXt74kKc7tR__Ggm32X44m_4f2v-Buw0sQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73508756</pqid></control><display><type>article</type><title>Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Lee, Byung Il ; Oh, Suk Hoon ; Woo, Eung Je ; Lee, Soo Yeol ; Cho, Min Hyoung ; Kwon, Ohin ; Seo, Jin Keun ; Lee, June-Yub ; Baek, Woon Sik</creator><creatorcontrib>Lee, Byung Il ; Oh, Suk Hoon ; Woo, Eung Je ; Lee, Soo Yeol ; Cho, Min Hyoung ; Kwon, Ohin ; Seo, Jin Keun ; Lee, June-Yub ; Baek, Woon Sik</creatorcontrib><description>In magnetic resonance electrical impedance tomography (MREIT), we try to reconstruct a cross-sectional resistivity (or conductivity) image of a subject. When we inject a current through surface electrodes, it generates a magnetic field. Using a magnetic resonance imaging (MRI) scanner, we can obtain the induced magnetic flux density from MR phase images of the subject. We use recessed electrodes to avoid undesirable artefacts near electrodes in measuring magnetic flux densities. An MREIT image reconstruction algorithm produces cross-sectional resistivity images utilizing the measured internal magnetic flux density in addition to boundary voltage data. In order to develop such an image reconstruction algorithm, we need a three-dimensional forward solver. Given injection currents as boundary conditions, the forward solver described in this paper computes voltage and current density distributions using the finite element method (FEM). Then, it calculates the magnetic flux density within the subject using the Biot-Savart law and FEM. The performance of the forward solver is analysed and found to be enough for use in MREIT for resistivity image reconstructions and also experimental designs and validations. The forward solver may find other applications where one needs to compute voltage, current density and magnetic flux density distributions all within a volume conductor.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/48/13/309</identifier><identifier>PMID: 12884929</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Biological and medical sciences ; Electric Conductivity ; Electric Impedance ; Electrodes ; Image Enhancement ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Spectroscopy ; Magnetics ; Medical sciences ; Models, Statistical ; Phantoms, Imaging ; Tomography - methods</subject><ispartof>Physics in medicine & biology, 2003-07, Vol.48 (13), p.1971-1986</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-dd874960bc35f15c6cbcc75389349ddac89b87c0f2b1d6131f805cea7fbc97473</citedby><cites>FETCH-LOGICAL-c405t-dd874960bc35f15c6cbcc75389349ddac89b87c0f2b1d6131f805cea7fbc97473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0031-9155/48/13/309/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53805,53885</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14958292$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12884929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Byung Il</creatorcontrib><creatorcontrib>Oh, Suk Hoon</creatorcontrib><creatorcontrib>Woo, Eung Je</creatorcontrib><creatorcontrib>Lee, Soo Yeol</creatorcontrib><creatorcontrib>Cho, Min Hyoung</creatorcontrib><creatorcontrib>Kwon, Ohin</creatorcontrib><creatorcontrib>Seo, Jin Keun</creatorcontrib><creatorcontrib>Lee, June-Yub</creatorcontrib><creatorcontrib>Baek, Woon Sik</creatorcontrib><title>Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes</title><title>Physics in medicine & biology</title><addtitle>Phys Med Biol</addtitle><description>In magnetic resonance electrical impedance tomography (MREIT), we try to reconstruct a cross-sectional resistivity (or conductivity) image of a subject. When we inject a current through surface electrodes, it generates a magnetic field. Using a magnetic resonance imaging (MRI) scanner, we can obtain the induced magnetic flux density from MR phase images of the subject. We use recessed electrodes to avoid undesirable artefacts near electrodes in measuring magnetic flux densities. An MREIT image reconstruction algorithm produces cross-sectional resistivity images utilizing the measured internal magnetic flux density in addition to boundary voltage data. In order to develop such an image reconstruction algorithm, we need a three-dimensional forward solver. Given injection currents as boundary conditions, the forward solver described in this paper computes voltage and current density distributions using the finite element method (FEM). Then, it calculates the magnetic flux density within the subject using the Biot-Savart law and FEM. The performance of the forward solver is analysed and found to be enough for use in MREIT for resistivity image reconstructions and also experimental designs and validations. The forward solver may find other applications where one needs to compute voltage, current density and magnetic flux density distributions all within a volume conductor.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Electric Conductivity</subject><subject>Electric Impedance</subject><subject>Electrodes</subject><subject>Image Enhancement</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Magnetics</subject><subject>Medical sciences</subject><subject>Models, Statistical</subject><subject>Phantoms, Imaging</subject><subject>Tomography - methods</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kVGL1DAUhYMo7rj6CwTJi6JCd5KmaZNHWVZdWBFkfA5pcjsbaZua21Hmj_h7TZ2y-6D4FLjnOyeXcwl5ztkFZ0ptGRO80FzKbaW2XGwF0w_IhouaF7Ws2UOyuSPOyBPEb4xxrsrqMTnjpVKVLvWG_NrdJoDChwFGDHG0Pe1i-mmTpxj7H5CoHT0NM9IJUlYGOzrIM9sfMeDC0sHuR5iDowkwByw69ODmFFxOC8ME_s9wjkPcJzvdHunrT1-urndv6AHDuM8-B4jgV1v0gE_Jo872CM_W95x8fX-1u_xY3Hz-cH357qZwFZNz4b1qKl2z1gnZcelq1zrXSKG0qLT31indqsaxrmy5r7ngnWLSgW261ummasQ5eXXKnVL8fgCczRDQQd_bEeIBTSMkU42sMyhOoEsRMUFnphQGm46GM7Ocwyxlm6VsUynDhcnnyK4Xa_yhHcDfe9b-M_ByBSzmtrqUmwp4z1VaqlKXmXt74kKc7tR__Ggm32X44m_4f2v-Buw0sQc</recordid><startdate>20030707</startdate><enddate>20030707</enddate><creator>Lee, Byung Il</creator><creator>Oh, Suk Hoon</creator><creator>Woo, Eung Je</creator><creator>Lee, Soo Yeol</creator><creator>Cho, Min Hyoung</creator><creator>Kwon, Ohin</creator><creator>Seo, Jin Keun</creator><creator>Lee, June-Yub</creator><creator>Baek, Woon Sik</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030707</creationdate><title>Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes</title><author>Lee, Byung Il ; Oh, Suk Hoon ; Woo, Eung Je ; Lee, Soo Yeol ; Cho, Min Hyoung ; Kwon, Ohin ; Seo, Jin Keun ; Lee, June-Yub ; Baek, Woon Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-dd874960bc35f15c6cbcc75389349ddac89b87c0f2b1d6131f805cea7fbc97473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Electric Conductivity</topic><topic>Electric Impedance</topic><topic>Electrodes</topic><topic>Image Enhancement</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Magnetics</topic><topic>Medical sciences</topic><topic>Models, Statistical</topic><topic>Phantoms, Imaging</topic><topic>Tomography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Byung Il</creatorcontrib><creatorcontrib>Oh, Suk Hoon</creatorcontrib><creatorcontrib>Woo, Eung Je</creatorcontrib><creatorcontrib>Lee, Soo Yeol</creatorcontrib><creatorcontrib>Cho, Min Hyoung</creatorcontrib><creatorcontrib>Kwon, Ohin</creatorcontrib><creatorcontrib>Seo, Jin Keun</creatorcontrib><creatorcontrib>Lee, June-Yub</creatorcontrib><creatorcontrib>Baek, Woon Sik</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Byung Il</au><au>Oh, Suk Hoon</au><au>Woo, Eung Je</au><au>Lee, Soo Yeol</au><au>Cho, Min Hyoung</au><au>Kwon, Ohin</au><au>Seo, Jin Keun</au><au>Lee, June-Yub</au><au>Baek, Woon Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes</atitle><jtitle>Physics in medicine & biology</jtitle><addtitle>Phys Med Biol</addtitle><date>2003-07-07</date><risdate>2003</risdate><volume>48</volume><issue>13</issue><spage>1971</spage><epage>1986</epage><pages>1971-1986</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>In magnetic resonance electrical impedance tomography (MREIT), we try to reconstruct a cross-sectional resistivity (or conductivity) image of a subject. When we inject a current through surface electrodes, it generates a magnetic field. Using a magnetic resonance imaging (MRI) scanner, we can obtain the induced magnetic flux density from MR phase images of the subject. We use recessed electrodes to avoid undesirable artefacts near electrodes in measuring magnetic flux densities. An MREIT image reconstruction algorithm produces cross-sectional resistivity images utilizing the measured internal magnetic flux density in addition to boundary voltage data. In order to develop such an image reconstruction algorithm, we need a three-dimensional forward solver. Given injection currents as boundary conditions, the forward solver described in this paper computes voltage and current density distributions using the finite element method (FEM). Then, it calculates the magnetic flux density within the subject using the Biot-Savart law and FEM. The performance of the forward solver is analysed and found to be enough for use in MREIT for resistivity image reconstructions and also experimental designs and validations. The forward solver may find other applications where one needs to compute voltage, current density and magnetic flux density distributions all within a volume conductor.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>12884929</pmid><doi>10.1088/0031-9155/48/13/309</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2003-07, Vol.48 (13), p.1971-1986 |
issn | 0031-9155 1361-6560 |
language | eng |
recordid | cdi_proquest_miscellaneous_73508756 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Algorithms Biological and medical sciences Electric Conductivity Electric Impedance Electrodes Image Enhancement Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Magnetic Resonance Spectroscopy Magnetics Medical sciences Models, Statistical Phantoms, Imaging Tomography - methods |
title | Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A11%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20forward%20solver%20and%20its%20performance%20analysis%20for%20magnetic%20resonance%20electrical%20impedance%20tomography%20(MREIT)%20using%20recessed%20electrodes&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Lee,%20Byung%20Il&rft.date=2003-07-07&rft.volume=48&rft.issue=13&rft.spage=1971&rft.epage=1986&rft.pages=1971-1986&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/0031-9155/48/13/309&rft_dat=%3Cproquest_pubme%3E73508756%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73508756&rft_id=info:pmid/12884929&rfr_iscdi=true |