Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes

In magnetic resonance electrical impedance tomography (MREIT), we try to reconstruct a cross-sectional resistivity (or conductivity) image of a subject. When we inject a current through surface electrodes, it generates a magnetic field. Using a magnetic resonance imaging (MRI) scanner, we can obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2003-07, Vol.48 (13), p.1971-1986
Hauptverfasser: Lee, Byung Il, Oh, Suk Hoon, Woo, Eung Je, Lee, Soo Yeol, Cho, Min Hyoung, Kwon, Ohin, Seo, Jin Keun, Lee, June-Yub, Baek, Woon Sik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1986
container_issue 13
container_start_page 1971
container_title Physics in medicine & biology
container_volume 48
creator Lee, Byung Il
Oh, Suk Hoon
Woo, Eung Je
Lee, Soo Yeol
Cho, Min Hyoung
Kwon, Ohin
Seo, Jin Keun
Lee, June-Yub
Baek, Woon Sik
description In magnetic resonance electrical impedance tomography (MREIT), we try to reconstruct a cross-sectional resistivity (or conductivity) image of a subject. When we inject a current through surface electrodes, it generates a magnetic field. Using a magnetic resonance imaging (MRI) scanner, we can obtain the induced magnetic flux density from MR phase images of the subject. We use recessed electrodes to avoid undesirable artefacts near electrodes in measuring magnetic flux densities. An MREIT image reconstruction algorithm produces cross-sectional resistivity images utilizing the measured internal magnetic flux density in addition to boundary voltage data. In order to develop such an image reconstruction algorithm, we need a three-dimensional forward solver. Given injection currents as boundary conditions, the forward solver described in this paper computes voltage and current density distributions using the finite element method (FEM). Then, it calculates the magnetic flux density within the subject using the Biot-Savart law and FEM. The performance of the forward solver is analysed and found to be enough for use in MREIT for resistivity image reconstructions and also experimental designs and validations. The forward solver may find other applications where one needs to compute voltage, current density and magnetic flux density distributions all within a volume conductor.
doi_str_mv 10.1088/0031-9155/48/13/309
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_73508756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73508756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-dd874960bc35f15c6cbcc75389349ddac89b87c0f2b1d6131f805cea7fbc97473</originalsourceid><addsrcrecordid>eNp9kVGL1DAUhYMo7rj6CwTJi6JCd5KmaZNHWVZdWBFkfA5pcjsbaZua21Hmj_h7TZ2y-6D4FLjnOyeXcwl5ztkFZ0ptGRO80FzKbaW2XGwF0w_IhouaF7Ws2UOyuSPOyBPEb4xxrsrqMTnjpVKVLvWG_NrdJoDChwFGDHG0Pe1i-mmTpxj7H5CoHT0NM9IJUlYGOzrIM9sfMeDC0sHuR5iDowkwByw69ODmFFxOC8ME_s9wjkPcJzvdHunrT1-urndv6AHDuM8-B4jgV1v0gE_Jo872CM_W95x8fX-1u_xY3Hz-cH357qZwFZNz4b1qKl2z1gnZcelq1zrXSKG0qLT31indqsaxrmy5r7ngnWLSgW261ummasQ5eXXKnVL8fgCczRDQQd_bEeIBTSMkU42sMyhOoEsRMUFnphQGm46GM7Ocwyxlm6VsUynDhcnnyK4Xa_yhHcDfe9b-M_ByBSzmtrqUmwp4z1VaqlKXmXt74kKc7tR__Ggm32X44m_4f2v-Buw0sQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73508756</pqid></control><display><type>article</type><title>Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Lee, Byung Il ; Oh, Suk Hoon ; Woo, Eung Je ; Lee, Soo Yeol ; Cho, Min Hyoung ; Kwon, Ohin ; Seo, Jin Keun ; Lee, June-Yub ; Baek, Woon Sik</creator><creatorcontrib>Lee, Byung Il ; Oh, Suk Hoon ; Woo, Eung Je ; Lee, Soo Yeol ; Cho, Min Hyoung ; Kwon, Ohin ; Seo, Jin Keun ; Lee, June-Yub ; Baek, Woon Sik</creatorcontrib><description>In magnetic resonance electrical impedance tomography (MREIT), we try to reconstruct a cross-sectional resistivity (or conductivity) image of a subject. When we inject a current through surface electrodes, it generates a magnetic field. Using a magnetic resonance imaging (MRI) scanner, we can obtain the induced magnetic flux density from MR phase images of the subject. We use recessed electrodes to avoid undesirable artefacts near electrodes in measuring magnetic flux densities. An MREIT image reconstruction algorithm produces cross-sectional resistivity images utilizing the measured internal magnetic flux density in addition to boundary voltage data. In order to develop such an image reconstruction algorithm, we need a three-dimensional forward solver. Given injection currents as boundary conditions, the forward solver described in this paper computes voltage and current density distributions using the finite element method (FEM). Then, it calculates the magnetic flux density within the subject using the Biot-Savart law and FEM. The performance of the forward solver is analysed and found to be enough for use in MREIT for resistivity image reconstructions and also experimental designs and validations. The forward solver may find other applications where one needs to compute voltage, current density and magnetic flux density distributions all within a volume conductor.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/48/13/309</identifier><identifier>PMID: 12884929</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Biological and medical sciences ; Electric Conductivity ; Electric Impedance ; Electrodes ; Image Enhancement ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Spectroscopy ; Magnetics ; Medical sciences ; Models, Statistical ; Phantoms, Imaging ; Tomography - methods</subject><ispartof>Physics in medicine &amp; biology, 2003-07, Vol.48 (13), p.1971-1986</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-dd874960bc35f15c6cbcc75389349ddac89b87c0f2b1d6131f805cea7fbc97473</citedby><cites>FETCH-LOGICAL-c405t-dd874960bc35f15c6cbcc75389349ddac89b87c0f2b1d6131f805cea7fbc97473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0031-9155/48/13/309/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53805,53885</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14958292$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12884929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Byung Il</creatorcontrib><creatorcontrib>Oh, Suk Hoon</creatorcontrib><creatorcontrib>Woo, Eung Je</creatorcontrib><creatorcontrib>Lee, Soo Yeol</creatorcontrib><creatorcontrib>Cho, Min Hyoung</creatorcontrib><creatorcontrib>Kwon, Ohin</creatorcontrib><creatorcontrib>Seo, Jin Keun</creatorcontrib><creatorcontrib>Lee, June-Yub</creatorcontrib><creatorcontrib>Baek, Woon Sik</creatorcontrib><title>Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes</title><title>Physics in medicine &amp; biology</title><addtitle>Phys Med Biol</addtitle><description>In magnetic resonance electrical impedance tomography (MREIT), we try to reconstruct a cross-sectional resistivity (or conductivity) image of a subject. When we inject a current through surface electrodes, it generates a magnetic field. Using a magnetic resonance imaging (MRI) scanner, we can obtain the induced magnetic flux density from MR phase images of the subject. We use recessed electrodes to avoid undesirable artefacts near electrodes in measuring magnetic flux densities. An MREIT image reconstruction algorithm produces cross-sectional resistivity images utilizing the measured internal magnetic flux density in addition to boundary voltage data. In order to develop such an image reconstruction algorithm, we need a three-dimensional forward solver. Given injection currents as boundary conditions, the forward solver described in this paper computes voltage and current density distributions using the finite element method (FEM). Then, it calculates the magnetic flux density within the subject using the Biot-Savart law and FEM. The performance of the forward solver is analysed and found to be enough for use in MREIT for resistivity image reconstructions and also experimental designs and validations. The forward solver may find other applications where one needs to compute voltage, current density and magnetic flux density distributions all within a volume conductor.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Electric Conductivity</subject><subject>Electric Impedance</subject><subject>Electrodes</subject><subject>Image Enhancement</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Magnetics</subject><subject>Medical sciences</subject><subject>Models, Statistical</subject><subject>Phantoms, Imaging</subject><subject>Tomography - methods</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kVGL1DAUhYMo7rj6CwTJi6JCd5KmaZNHWVZdWBFkfA5pcjsbaZua21Hmj_h7TZ2y-6D4FLjnOyeXcwl5ztkFZ0ptGRO80FzKbaW2XGwF0w_IhouaF7Ws2UOyuSPOyBPEb4xxrsrqMTnjpVKVLvWG_NrdJoDChwFGDHG0Pe1i-mmTpxj7H5CoHT0NM9IJUlYGOzrIM9sfMeDC0sHuR5iDowkwByw69ODmFFxOC8ME_s9wjkPcJzvdHunrT1-urndv6AHDuM8-B4jgV1v0gE_Jo872CM_W95x8fX-1u_xY3Hz-cH357qZwFZNz4b1qKl2z1gnZcelq1zrXSKG0qLT31indqsaxrmy5r7ngnWLSgW261ummasQ5eXXKnVL8fgCczRDQQd_bEeIBTSMkU42sMyhOoEsRMUFnphQGm46GM7Ocwyxlm6VsUynDhcnnyK4Xa_yhHcDfe9b-M_ByBSzmtrqUmwp4z1VaqlKXmXt74kKc7tR__Ggm32X44m_4f2v-Buw0sQc</recordid><startdate>20030707</startdate><enddate>20030707</enddate><creator>Lee, Byung Il</creator><creator>Oh, Suk Hoon</creator><creator>Woo, Eung Je</creator><creator>Lee, Soo Yeol</creator><creator>Cho, Min Hyoung</creator><creator>Kwon, Ohin</creator><creator>Seo, Jin Keun</creator><creator>Lee, June-Yub</creator><creator>Baek, Woon Sik</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030707</creationdate><title>Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes</title><author>Lee, Byung Il ; Oh, Suk Hoon ; Woo, Eung Je ; Lee, Soo Yeol ; Cho, Min Hyoung ; Kwon, Ohin ; Seo, Jin Keun ; Lee, June-Yub ; Baek, Woon Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-dd874960bc35f15c6cbcc75389349ddac89b87c0f2b1d6131f805cea7fbc97473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Electric Conductivity</topic><topic>Electric Impedance</topic><topic>Electrodes</topic><topic>Image Enhancement</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Magnetics</topic><topic>Medical sciences</topic><topic>Models, Statistical</topic><topic>Phantoms, Imaging</topic><topic>Tomography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Byung Il</creatorcontrib><creatorcontrib>Oh, Suk Hoon</creatorcontrib><creatorcontrib>Woo, Eung Je</creatorcontrib><creatorcontrib>Lee, Soo Yeol</creatorcontrib><creatorcontrib>Cho, Min Hyoung</creatorcontrib><creatorcontrib>Kwon, Ohin</creatorcontrib><creatorcontrib>Seo, Jin Keun</creatorcontrib><creatorcontrib>Lee, June-Yub</creatorcontrib><creatorcontrib>Baek, Woon Sik</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Byung Il</au><au>Oh, Suk Hoon</au><au>Woo, Eung Je</au><au>Lee, Soo Yeol</au><au>Cho, Min Hyoung</au><au>Kwon, Ohin</au><au>Seo, Jin Keun</au><au>Lee, June-Yub</au><au>Baek, Woon Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes</atitle><jtitle>Physics in medicine &amp; biology</jtitle><addtitle>Phys Med Biol</addtitle><date>2003-07-07</date><risdate>2003</risdate><volume>48</volume><issue>13</issue><spage>1971</spage><epage>1986</epage><pages>1971-1986</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>In magnetic resonance electrical impedance tomography (MREIT), we try to reconstruct a cross-sectional resistivity (or conductivity) image of a subject. When we inject a current through surface electrodes, it generates a magnetic field. Using a magnetic resonance imaging (MRI) scanner, we can obtain the induced magnetic flux density from MR phase images of the subject. We use recessed electrodes to avoid undesirable artefacts near electrodes in measuring magnetic flux densities. An MREIT image reconstruction algorithm produces cross-sectional resistivity images utilizing the measured internal magnetic flux density in addition to boundary voltage data. In order to develop such an image reconstruction algorithm, we need a three-dimensional forward solver. Given injection currents as boundary conditions, the forward solver described in this paper computes voltage and current density distributions using the finite element method (FEM). Then, it calculates the magnetic flux density within the subject using the Biot-Savart law and FEM. The performance of the forward solver is analysed and found to be enough for use in MREIT for resistivity image reconstructions and also experimental designs and validations. The forward solver may find other applications where one needs to compute voltage, current density and magnetic flux density distributions all within a volume conductor.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>12884929</pmid><doi>10.1088/0031-9155/48/13/309</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2003-07, Vol.48 (13), p.1971-1986
issn 0031-9155
1361-6560
language eng
recordid cdi_proquest_miscellaneous_73508756
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Algorithms
Biological and medical sciences
Electric Conductivity
Electric Impedance
Electrodes
Image Enhancement
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Magnetic Resonance Spectroscopy
Magnetics
Medical sciences
Models, Statistical
Phantoms, Imaging
Tomography - methods
title Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A11%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20forward%20solver%20and%20its%20performance%20analysis%20for%20magnetic%20resonance%20electrical%20impedance%20tomography%20(MREIT)%20using%20recessed%20electrodes&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Lee,%20Byung%20Il&rft.date=2003-07-07&rft.volume=48&rft.issue=13&rft.spage=1971&rft.epage=1986&rft.pages=1971-1986&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/0031-9155/48/13/309&rft_dat=%3Cproquest_pubme%3E73508756%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73508756&rft_id=info:pmid/12884929&rfr_iscdi=true