Species of copper and zinc in sediments collected from the antarctic ocean and the Taiwan Erhjin Chi coastal area
The species of copper and zinc, such as bioexchangeable, skeletal, easily reducible (Fe and Mn oxides), moderately reducible (crystalline Mn oxide), organic combined with sulfides, and detritus with minerals, in mud and sand, separated from the surface Antarctic Ocean and the Taiwan Erhjin Chi coast...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 1993, Vol.80 (3), p.223-230 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The species of copper and zinc, such as bioexchangeable, skeletal, easily reducible (Fe and Mn oxides), moderately reducible (crystalline Mn oxide), organic combined with sulfides, and detritus with minerals, in mud and sand, separated from the surface Antarctic Ocean and the Taiwan Erhjin Chi coastal (including river and estuarine) sediments, have been analyzed by sequential leaching methods. Results show that in the Antarctic Ocean sediments, high concentrations of total copper (128 mg/kg) and zinc (458 mg/kg) were found in the high mud (99·09%) content samples compared with the low concentrations of total copper (83·8 mg/kg) and zinc (288 mg/kg) in low mud (51·69%) content samples. High concentrations of copper, zinc, manganese and iron are possibly due to the characteristics of manganese nodules, in which the species of copper and zinc are mainly contained in the crystalline Mn oxide phase. In the Taiwan Erhjin Chi coastal sediments, the total copper and zinc concentrations in mud and sand vary with season and location. High values were generally observed in the river sediments during the dry season, and low values were in the estuarine and coastal sediments during the heavy rainy season. High percentages of copper (as high as 49·4%) and zinc (as high as 76·7%) in mud and sand were in the bioexchangeable phase including the skeletal phase. This result might be correlated with the problems arising from human impact on copper and zinc as well as sewage pollution in Taiwan. In the organic combined phase, biogenic particulate matter related to higher primary productivity in the Antarctic Ocean is also discussed. |
---|---|
ISSN: | 0269-7491 1873-6424 |
DOI: | 10.1016/0269-7491(93)90042-M |