Acoustic enhancement of diffusion in a porous material

Lattice Boltzmann simulations are used to model the enhancement of diffusion which results from Eckart (attenuation driven) acoustic streaming in model porous material. Comparisons are made to Fickian diffusion where no flow is present and the diffusion when a fluid jet is used, which represents a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasonics 2003-09, Vol.41 (7), p.531-538
Hauptverfasser: Haydock, David, Yeomans, J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 538
container_issue 7
container_start_page 531
container_title Ultrasonics
container_volume 41
creator Haydock, David
Yeomans, J.M.
description Lattice Boltzmann simulations are used to model the enhancement of diffusion which results from Eckart (attenuation driven) acoustic streaming in model porous material. Comparisons are made to Fickian diffusion where no flow is present and the diffusion when a fluid jet is used, which represents a more conventional method of enhancement. We show that streaming can produce a higher diffusion rate for the same average flow velocity and propose that this is the result of the continuation within the material of the driving force that produces the acoustic streaming.
doi_str_mv 10.1016/S0041-624X(03)00158-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73492434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X03001586</els_id><sourcerecordid>73492434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-8ced8a96e2c3c69166c8b002d8e21ac66c08d499f19e7e74293a5a4719a76e023</originalsourceid><addsrcrecordid>eNqF0E1LwzAYwPEgipvTj6D0ouihmremyUnG8A0GHlTwFrL0KUb6MpNW8NubrcUdPYXA70ke_gidEnxNMBE3LxhzkgrK3y8xu8KYZDIVe2hKZM5TpYTcR9M_MkFHIXxGxCVhh2hCqCKRyCkSc9v2oXM2gebDNBZqaLqkLZPClWUfXNskrklMsm59dEltOvDOVMfooDRVgJPxnKG3-7vXxWO6fH54WsyXqWWKdKm0UEijBFDLrFBECCtXGNNCAiXGxiuWBVeqJApyyDlVzGSG50SZXACmbIYuhnfXvv3qIXS6dsFCVZkG4j46Z1xRzniE2QCtb0PwUOq1d7XxP5pgvQmmt8H0pobGTG-DaRHnzsYP-lUNxW5qLBTB-QhMsKYqfYzkws5lmOY8U9HdDg5ijm8HXgfrIAYtnAfb6aJ1_6zyC7zwhqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73492434</pqid></control><display><type>article</type><title>Acoustic enhancement of diffusion in a porous material</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Haydock, David ; Yeomans, J.M.</creator><creatorcontrib>Haydock, David ; Yeomans, J.M.</creatorcontrib><description>Lattice Boltzmann simulations are used to model the enhancement of diffusion which results from Eckart (attenuation driven) acoustic streaming in model porous material. Comparisons are made to Fickian diffusion where no flow is present and the diffusion when a fluid jet is used, which represents a more conventional method of enhancement. We show that streaming can produce a higher diffusion rate for the same average flow velocity and propose that this is the result of the continuation within the material of the driving force that produces the acoustic streaming.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/S0041-624X(03)00158-6</identifier><identifier>PMID: 12919688</identifier><identifier>CODEN: ULTRA3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acoustic streaming ; Acoustics ; Diffusion ; Diffusion in porous materials ; Enhancement of diffusion ; Enhancement of mass transport ; Exact sciences and technology ; Flows through porous media ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Models, Theoretical ; Nonhomogeneous flows ; Nonlinear acoustics ; Nonlinear acoustics, macrosonics ; Physics ; Porosity ; Structural acoustics and vibration</subject><ispartof>Ultrasonics, 2003-09, Vol.41 (7), p.531-538</ispartof><rights>2003</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-8ced8a96e2c3c69166c8b002d8e21ac66c08d499f19e7e74293a5a4719a76e023</citedby><cites>FETCH-LOGICAL-c391t-8ced8a96e2c3c69166c8b002d8e21ac66c08d499f19e7e74293a5a4719a76e023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0041-624X(03)00158-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15027459$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12919688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haydock, David</creatorcontrib><creatorcontrib>Yeomans, J.M.</creatorcontrib><title>Acoustic enhancement of diffusion in a porous material</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>Lattice Boltzmann simulations are used to model the enhancement of diffusion which results from Eckart (attenuation driven) acoustic streaming in model porous material. Comparisons are made to Fickian diffusion where no flow is present and the diffusion when a fluid jet is used, which represents a more conventional method of enhancement. We show that streaming can produce a higher diffusion rate for the same average flow velocity and propose that this is the result of the continuation within the material of the driving force that produces the acoustic streaming.</description><subject>Acoustic streaming</subject><subject>Acoustics</subject><subject>Diffusion</subject><subject>Diffusion in porous materials</subject><subject>Enhancement of diffusion</subject><subject>Enhancement of mass transport</subject><subject>Exact sciences and technology</subject><subject>Flows through porous media</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Models, Theoretical</subject><subject>Nonhomogeneous flows</subject><subject>Nonlinear acoustics</subject><subject>Nonlinear acoustics, macrosonics</subject><subject>Physics</subject><subject>Porosity</subject><subject>Structural acoustics and vibration</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1LwzAYwPEgipvTj6D0ouihmremyUnG8A0GHlTwFrL0KUb6MpNW8NubrcUdPYXA70ke_gidEnxNMBE3LxhzkgrK3y8xu8KYZDIVe2hKZM5TpYTcR9M_MkFHIXxGxCVhh2hCqCKRyCkSc9v2oXM2gebDNBZqaLqkLZPClWUfXNskrklMsm59dEltOvDOVMfooDRVgJPxnKG3-7vXxWO6fH54WsyXqWWKdKm0UEijBFDLrFBECCtXGNNCAiXGxiuWBVeqJApyyDlVzGSG50SZXACmbIYuhnfXvv3qIXS6dsFCVZkG4j46Z1xRzniE2QCtb0PwUOq1d7XxP5pgvQmmt8H0pobGTG-DaRHnzsYP-lUNxW5qLBTB-QhMsKYqfYzkws5lmOY8U9HdDg5ijm8HXgfrIAYtnAfb6aJ1_6zyC7zwhqo</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Haydock, David</creator><creator>Yeomans, J.M.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030901</creationdate><title>Acoustic enhancement of diffusion in a porous material</title><author>Haydock, David ; Yeomans, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-8ced8a96e2c3c69166c8b002d8e21ac66c08d499f19e7e74293a5a4719a76e023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acoustic streaming</topic><topic>Acoustics</topic><topic>Diffusion</topic><topic>Diffusion in porous materials</topic><topic>Enhancement of diffusion</topic><topic>Enhancement of mass transport</topic><topic>Exact sciences and technology</topic><topic>Flows through porous media</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Models, Theoretical</topic><topic>Nonhomogeneous flows</topic><topic>Nonlinear acoustics</topic><topic>Nonlinear acoustics, macrosonics</topic><topic>Physics</topic><topic>Porosity</topic><topic>Structural acoustics and vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haydock, David</creatorcontrib><creatorcontrib>Yeomans, J.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haydock, David</au><au>Yeomans, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic enhancement of diffusion in a porous material</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2003-09-01</date><risdate>2003</risdate><volume>41</volume><issue>7</issue><spage>531</spage><epage>538</epage><pages>531-538</pages><issn>0041-624X</issn><eissn>1874-9968</eissn><coden>ULTRA3</coden><abstract>Lattice Boltzmann simulations are used to model the enhancement of diffusion which results from Eckart (attenuation driven) acoustic streaming in model porous material. Comparisons are made to Fickian diffusion where no flow is present and the diffusion when a fluid jet is used, which represents a more conventional method of enhancement. We show that streaming can produce a higher diffusion rate for the same average flow velocity and propose that this is the result of the continuation within the material of the driving force that produces the acoustic streaming.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>12919688</pmid><doi>10.1016/S0041-624X(03)00158-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-624X
ispartof Ultrasonics, 2003-09, Vol.41 (7), p.531-538
issn 0041-624X
1874-9968
language eng
recordid cdi_proquest_miscellaneous_73492434
source MEDLINE; Elsevier ScienceDirect Journals
subjects Acoustic streaming
Acoustics
Diffusion
Diffusion in porous materials
Enhancement of diffusion
Enhancement of mass transport
Exact sciences and technology
Flows through porous media
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Models, Theoretical
Nonhomogeneous flows
Nonlinear acoustics
Nonlinear acoustics, macrosonics
Physics
Porosity
Structural acoustics and vibration
title Acoustic enhancement of diffusion in a porous material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20enhancement%20of%20diffusion%20in%20a%20porous%20material&rft.jtitle=Ultrasonics&rft.au=Haydock,%20David&rft.date=2003-09-01&rft.volume=41&rft.issue=7&rft.spage=531&rft.epage=538&rft.pages=531-538&rft.issn=0041-624X&rft.eissn=1874-9968&rft.coden=ULTRA3&rft_id=info:doi/10.1016/S0041-624X(03)00158-6&rft_dat=%3Cproquest_cross%3E73492434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73492434&rft_id=info:pmid/12919688&rft_els_id=S0041624X03001586&rfr_iscdi=true