Acoustic enhancement of diffusion in a porous material
Lattice Boltzmann simulations are used to model the enhancement of diffusion which results from Eckart (attenuation driven) acoustic streaming in model porous material. Comparisons are made to Fickian diffusion where no flow is present and the diffusion when a fluid jet is used, which represents a m...
Gespeichert in:
Veröffentlicht in: | Ultrasonics 2003-09, Vol.41 (7), p.531-538 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 538 |
---|---|
container_issue | 7 |
container_start_page | 531 |
container_title | Ultrasonics |
container_volume | 41 |
creator | Haydock, David Yeomans, J.M. |
description | Lattice Boltzmann simulations are used to model the enhancement of diffusion which results from Eckart (attenuation driven) acoustic streaming in model porous material. Comparisons are made to Fickian diffusion where no flow is present and the diffusion when a fluid jet is used, which represents a more conventional method of enhancement. We show that streaming can produce a higher diffusion rate for the same average flow velocity and propose that this is the result of the continuation within the material of the driving force that produces the acoustic streaming. |
doi_str_mv | 10.1016/S0041-624X(03)00158-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73492434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X03001586</els_id><sourcerecordid>73492434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-8ced8a96e2c3c69166c8b002d8e21ac66c08d499f19e7e74293a5a4719a76e023</originalsourceid><addsrcrecordid>eNqF0E1LwzAYwPEgipvTj6D0ouihmremyUnG8A0GHlTwFrL0KUb6MpNW8NubrcUdPYXA70ke_gidEnxNMBE3LxhzkgrK3y8xu8KYZDIVe2hKZM5TpYTcR9M_MkFHIXxGxCVhh2hCqCKRyCkSc9v2oXM2gebDNBZqaLqkLZPClWUfXNskrklMsm59dEltOvDOVMfooDRVgJPxnKG3-7vXxWO6fH54WsyXqWWKdKm0UEijBFDLrFBECCtXGNNCAiXGxiuWBVeqJApyyDlVzGSG50SZXACmbIYuhnfXvv3qIXS6dsFCVZkG4j46Z1xRzniE2QCtb0PwUOq1d7XxP5pgvQmmt8H0pobGTG-DaRHnzsYP-lUNxW5qLBTB-QhMsKYqfYzkws5lmOY8U9HdDg5ijm8HXgfrIAYtnAfb6aJ1_6zyC7zwhqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73492434</pqid></control><display><type>article</type><title>Acoustic enhancement of diffusion in a porous material</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Haydock, David ; Yeomans, J.M.</creator><creatorcontrib>Haydock, David ; Yeomans, J.M.</creatorcontrib><description>Lattice Boltzmann simulations are used to model the enhancement of diffusion which results from Eckart (attenuation driven) acoustic streaming in model porous material. Comparisons are made to Fickian diffusion where no flow is present and the diffusion when a fluid jet is used, which represents a more conventional method of enhancement. We show that streaming can produce a higher diffusion rate for the same average flow velocity and propose that this is the result of the continuation within the material of the driving force that produces the acoustic streaming.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/S0041-624X(03)00158-6</identifier><identifier>PMID: 12919688</identifier><identifier>CODEN: ULTRA3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acoustic streaming ; Acoustics ; Diffusion ; Diffusion in porous materials ; Enhancement of diffusion ; Enhancement of mass transport ; Exact sciences and technology ; Flows through porous media ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Models, Theoretical ; Nonhomogeneous flows ; Nonlinear acoustics ; Nonlinear acoustics, macrosonics ; Physics ; Porosity ; Structural acoustics and vibration</subject><ispartof>Ultrasonics, 2003-09, Vol.41 (7), p.531-538</ispartof><rights>2003</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-8ced8a96e2c3c69166c8b002d8e21ac66c08d499f19e7e74293a5a4719a76e023</citedby><cites>FETCH-LOGICAL-c391t-8ced8a96e2c3c69166c8b002d8e21ac66c08d499f19e7e74293a5a4719a76e023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0041-624X(03)00158-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15027459$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12919688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haydock, David</creatorcontrib><creatorcontrib>Yeomans, J.M.</creatorcontrib><title>Acoustic enhancement of diffusion in a porous material</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>Lattice Boltzmann simulations are used to model the enhancement of diffusion which results from Eckart (attenuation driven) acoustic streaming in model porous material. Comparisons are made to Fickian diffusion where no flow is present and the diffusion when a fluid jet is used, which represents a more conventional method of enhancement. We show that streaming can produce a higher diffusion rate for the same average flow velocity and propose that this is the result of the continuation within the material of the driving force that produces the acoustic streaming.</description><subject>Acoustic streaming</subject><subject>Acoustics</subject><subject>Diffusion</subject><subject>Diffusion in porous materials</subject><subject>Enhancement of diffusion</subject><subject>Enhancement of mass transport</subject><subject>Exact sciences and technology</subject><subject>Flows through porous media</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Models, Theoretical</subject><subject>Nonhomogeneous flows</subject><subject>Nonlinear acoustics</subject><subject>Nonlinear acoustics, macrosonics</subject><subject>Physics</subject><subject>Porosity</subject><subject>Structural acoustics and vibration</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1LwzAYwPEgipvTj6D0ouihmremyUnG8A0GHlTwFrL0KUb6MpNW8NubrcUdPYXA70ke_gidEnxNMBE3LxhzkgrK3y8xu8KYZDIVe2hKZM5TpYTcR9M_MkFHIXxGxCVhh2hCqCKRyCkSc9v2oXM2gebDNBZqaLqkLZPClWUfXNskrklMsm59dEltOvDOVMfooDRVgJPxnKG3-7vXxWO6fH54WsyXqWWKdKm0UEijBFDLrFBECCtXGNNCAiXGxiuWBVeqJApyyDlVzGSG50SZXACmbIYuhnfXvv3qIXS6dsFCVZkG4j46Z1xRzniE2QCtb0PwUOq1d7XxP5pgvQmmt8H0pobGTG-DaRHnzsYP-lUNxW5qLBTB-QhMsKYqfYzkws5lmOY8U9HdDg5ijm8HXgfrIAYtnAfb6aJ1_6zyC7zwhqo</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Haydock, David</creator><creator>Yeomans, J.M.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030901</creationdate><title>Acoustic enhancement of diffusion in a porous material</title><author>Haydock, David ; Yeomans, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-8ced8a96e2c3c69166c8b002d8e21ac66c08d499f19e7e74293a5a4719a76e023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acoustic streaming</topic><topic>Acoustics</topic><topic>Diffusion</topic><topic>Diffusion in porous materials</topic><topic>Enhancement of diffusion</topic><topic>Enhancement of mass transport</topic><topic>Exact sciences and technology</topic><topic>Flows through porous media</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Models, Theoretical</topic><topic>Nonhomogeneous flows</topic><topic>Nonlinear acoustics</topic><topic>Nonlinear acoustics, macrosonics</topic><topic>Physics</topic><topic>Porosity</topic><topic>Structural acoustics and vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haydock, David</creatorcontrib><creatorcontrib>Yeomans, J.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haydock, David</au><au>Yeomans, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic enhancement of diffusion in a porous material</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2003-09-01</date><risdate>2003</risdate><volume>41</volume><issue>7</issue><spage>531</spage><epage>538</epage><pages>531-538</pages><issn>0041-624X</issn><eissn>1874-9968</eissn><coden>ULTRA3</coden><abstract>Lattice Boltzmann simulations are used to model the enhancement of diffusion which results from Eckart (attenuation driven) acoustic streaming in model porous material. Comparisons are made to Fickian diffusion where no flow is present and the diffusion when a fluid jet is used, which represents a more conventional method of enhancement. We show that streaming can produce a higher diffusion rate for the same average flow velocity and propose that this is the result of the continuation within the material of the driving force that produces the acoustic streaming.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>12919688</pmid><doi>10.1016/S0041-624X(03)00158-6</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-624X |
ispartof | Ultrasonics, 2003-09, Vol.41 (7), p.531-538 |
issn | 0041-624X 1874-9968 |
language | eng |
recordid | cdi_proquest_miscellaneous_73492434 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Acoustic streaming Acoustics Diffusion Diffusion in porous materials Enhancement of diffusion Enhancement of mass transport Exact sciences and technology Flows through porous media Fluid dynamics Fundamental areas of phenomenology (including applications) Models, Theoretical Nonhomogeneous flows Nonlinear acoustics Nonlinear acoustics, macrosonics Physics Porosity Structural acoustics and vibration |
title | Acoustic enhancement of diffusion in a porous material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20enhancement%20of%20diffusion%20in%20a%20porous%20material&rft.jtitle=Ultrasonics&rft.au=Haydock,%20David&rft.date=2003-09-01&rft.volume=41&rft.issue=7&rft.spage=531&rft.epage=538&rft.pages=531-538&rft.issn=0041-624X&rft.eissn=1874-9968&rft.coden=ULTRA3&rft_id=info:doi/10.1016/S0041-624X(03)00158-6&rft_dat=%3Cproquest_cross%3E73492434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73492434&rft_id=info:pmid/12919688&rft_els_id=S0041624X03001586&rfr_iscdi=true |