Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke
The mixture of gait deviations seen in patients following a stroke is remarkably variable. An objective system for classification of gait patterns for this population could be used to guide treatment planning. Quantitated gait analysis was conducted for 47 individuals at admission to in-patient reha...
Gespeichert in:
Veröffentlicht in: | Gait & posture 2003-08, Vol.18 (1), p.114-125 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125 |
---|---|
container_issue | 1 |
container_start_page | 114 |
container_title | Gait & posture |
container_volume | 18 |
creator | Mulroy, Sara Gronley, JoAnne Weiss, Walt Newsam, Craig Perry, Jacquelin |
description | The mixture of gait deviations seen in patients following a stroke is remarkably variable. An objective system for classification of gait patterns for this population could be used to guide treatment planning. Quantitated gait analysis was conducted for 47 individuals at admission to in-patient rehabilitation and again at 6 months post-stroke for 42 subjects. Non-hierarchical cluster analysis was used to classify the gait patterns of patients based on the temporal–spatial and kinematic parameters of walking. Four clusters of patients were identified at both assessment intervals. At the admission test walking velocity, peak knee extension in mid stance and peak dorsiflexion in swing were the three factors that best characterized the groups. At 6 months the explanatory variables were velocity, knee extension in terminal stance, and knee flexion in pre swing. Differences in muscle strength and muscle activation patterns during walking were identified between groups. |
doi_str_mv | 10.1016/S0966-6362(02)00165-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73464855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0966636202001650</els_id><sourcerecordid>73464855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-aaf5d3304177a5182023c480ecac851c13b774047adebaee3f1ecc7674e4cad53</originalsourceid><addsrcrecordid>eNqFkE2LFDEQhoMo7jj6E5ScRA-tlU6603MSWfyCBQ-651CTrt6NZjpjKrMy_nrTzqBHIRBIPe9b5BHiqYJXClT_-gts-r7pdd--gPYl1KeugXtipQa7adpWbe6L1V_kQjxi_gYARg_tQ3Gh2qHrNNiV-HXNJNMkfTxwoSxxxnjkwHJKWd5gKHKPpQ7mSiBzmILHEtK8ZOok0FxYhlmWW5KEOR5rwygjFpKZfLqjfJT7W2RaGmNMP8N8I7nk9J0eiwcTRqYn53strt-_-3r5sbn6_OHT5durxhu7KQ3i1I1ag1HWYqeGFlrtzQDk0Q-d8kpvrTVgLI60RSI9KfLe9taQ8Th2ei2en3r3Of04EBe3C-wpRpwpHdhZbXqz-FiL7gT6nJgzTW6fww7z0Slwi3T3R7pbjDqoZ5HuoOaenRcctjsa_6XOlivw5gRQ_eZdoOzYV3OexlAlFTem8J8VvwGdgJQN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73464855</pqid></control><display><type>article</type><title>Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Mulroy, Sara ; Gronley, JoAnne ; Weiss, Walt ; Newsam, Craig ; Perry, Jacquelin</creator><creatorcontrib>Mulroy, Sara ; Gronley, JoAnne ; Weiss, Walt ; Newsam, Craig ; Perry, Jacquelin</creatorcontrib><description>The mixture of gait deviations seen in patients following a stroke is remarkably variable. An objective system for classification of gait patterns for this population could be used to guide treatment planning. Quantitated gait analysis was conducted for 47 individuals at admission to in-patient rehabilitation and again at 6 months post-stroke for 42 subjects. Non-hierarchical cluster analysis was used to classify the gait patterns of patients based on the temporal–spatial and kinematic parameters of walking. Four clusters of patients were identified at both assessment intervals. At the admission test walking velocity, peak knee extension in mid stance and peak dorsiflexion in swing were the three factors that best characterized the groups. At 6 months the explanatory variables were velocity, knee extension in terminal stance, and knee flexion in pre swing. Differences in muscle strength and muscle activation patterns during walking were identified between groups.</description><identifier>ISSN: 0966-6362</identifier><identifier>EISSN: 1879-2219</identifier><identifier>DOI: 10.1016/S0966-6362(02)00165-0</identifier><identifier>PMID: 12855307</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Adult ; Aged ; Ankle Joint - physiology ; Biomechanical Phenomena ; Cluster Analysis ; Electromyography ; Female ; Gait ; Gait - physiology ; Humans ; Image Processing, Computer-Assisted ; Knee Joint - physiology ; Male ; Middle Aged ; Muscle, Skeletal - physiology ; Stroke ; Stroke - physiopathology</subject><ispartof>Gait & posture, 2003-08, Vol.18 (1), p.114-125</ispartof><rights>2002 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-aaf5d3304177a5182023c480ecac851c13b774047adebaee3f1ecc7674e4cad53</citedby><cites>FETCH-LOGICAL-c479t-aaf5d3304177a5182023c480ecac851c13b774047adebaee3f1ecc7674e4cad53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0966-6362(02)00165-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12855307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mulroy, Sara</creatorcontrib><creatorcontrib>Gronley, JoAnne</creatorcontrib><creatorcontrib>Weiss, Walt</creatorcontrib><creatorcontrib>Newsam, Craig</creatorcontrib><creatorcontrib>Perry, Jacquelin</creatorcontrib><title>Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke</title><title>Gait & posture</title><addtitle>Gait Posture</addtitle><description>The mixture of gait deviations seen in patients following a stroke is remarkably variable. An objective system for classification of gait patterns for this population could be used to guide treatment planning. Quantitated gait analysis was conducted for 47 individuals at admission to in-patient rehabilitation and again at 6 months post-stroke for 42 subjects. Non-hierarchical cluster analysis was used to classify the gait patterns of patients based on the temporal–spatial and kinematic parameters of walking. Four clusters of patients were identified at both assessment intervals. At the admission test walking velocity, peak knee extension in mid stance and peak dorsiflexion in swing were the three factors that best characterized the groups. At 6 months the explanatory variables were velocity, knee extension in terminal stance, and knee flexion in pre swing. Differences in muscle strength and muscle activation patterns during walking were identified between groups.</description><subject>Adult</subject><subject>Aged</subject><subject>Ankle Joint - physiology</subject><subject>Biomechanical Phenomena</subject><subject>Cluster Analysis</subject><subject>Electromyography</subject><subject>Female</subject><subject>Gait</subject><subject>Gait - physiology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Knee Joint - physiology</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Muscle, Skeletal - physiology</subject><subject>Stroke</subject><subject>Stroke - physiopathology</subject><issn>0966-6362</issn><issn>1879-2219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE2LFDEQhoMo7jj6E5ScRA-tlU6603MSWfyCBQ-651CTrt6NZjpjKrMy_nrTzqBHIRBIPe9b5BHiqYJXClT_-gts-r7pdd--gPYl1KeugXtipQa7adpWbe6L1V_kQjxi_gYARg_tQ3Gh2qHrNNiV-HXNJNMkfTxwoSxxxnjkwHJKWd5gKHKPpQ7mSiBzmILHEtK8ZOok0FxYhlmWW5KEOR5rwygjFpKZfLqjfJT7W2RaGmNMP8N8I7nk9J0eiwcTRqYn53strt-_-3r5sbn6_OHT5durxhu7KQ3i1I1ag1HWYqeGFlrtzQDk0Q-d8kpvrTVgLI60RSI9KfLe9taQ8Th2ei2en3r3Of04EBe3C-wpRpwpHdhZbXqz-FiL7gT6nJgzTW6fww7z0Slwi3T3R7pbjDqoZ5HuoOaenRcctjsa_6XOlivw5gRQ_eZdoOzYV3OexlAlFTem8J8VvwGdgJQN</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Mulroy, Sara</creator><creator>Gronley, JoAnne</creator><creator>Weiss, Walt</creator><creator>Newsam, Craig</creator><creator>Perry, Jacquelin</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030801</creationdate><title>Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke</title><author>Mulroy, Sara ; Gronley, JoAnne ; Weiss, Walt ; Newsam, Craig ; Perry, Jacquelin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-aaf5d3304177a5182023c480ecac851c13b774047adebaee3f1ecc7674e4cad53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Ankle Joint - physiology</topic><topic>Biomechanical Phenomena</topic><topic>Cluster Analysis</topic><topic>Electromyography</topic><topic>Female</topic><topic>Gait</topic><topic>Gait - physiology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Knee Joint - physiology</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Muscle, Skeletal - physiology</topic><topic>Stroke</topic><topic>Stroke - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mulroy, Sara</creatorcontrib><creatorcontrib>Gronley, JoAnne</creatorcontrib><creatorcontrib>Weiss, Walt</creatorcontrib><creatorcontrib>Newsam, Craig</creatorcontrib><creatorcontrib>Perry, Jacquelin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Gait & posture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mulroy, Sara</au><au>Gronley, JoAnne</au><au>Weiss, Walt</au><au>Newsam, Craig</au><au>Perry, Jacquelin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke</atitle><jtitle>Gait & posture</jtitle><addtitle>Gait Posture</addtitle><date>2003-08-01</date><risdate>2003</risdate><volume>18</volume><issue>1</issue><spage>114</spage><epage>125</epage><pages>114-125</pages><issn>0966-6362</issn><eissn>1879-2219</eissn><abstract>The mixture of gait deviations seen in patients following a stroke is remarkably variable. An objective system for classification of gait patterns for this population could be used to guide treatment planning. Quantitated gait analysis was conducted for 47 individuals at admission to in-patient rehabilitation and again at 6 months post-stroke for 42 subjects. Non-hierarchical cluster analysis was used to classify the gait patterns of patients based on the temporal–spatial and kinematic parameters of walking. Four clusters of patients were identified at both assessment intervals. At the admission test walking velocity, peak knee extension in mid stance and peak dorsiflexion in swing were the three factors that best characterized the groups. At 6 months the explanatory variables were velocity, knee extension in terminal stance, and knee flexion in pre swing. Differences in muscle strength and muscle activation patterns during walking were identified between groups.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>12855307</pmid><doi>10.1016/S0966-6362(02)00165-0</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0966-6362 |
ispartof | Gait & posture, 2003-08, Vol.18 (1), p.114-125 |
issn | 0966-6362 1879-2219 |
language | eng |
recordid | cdi_proquest_miscellaneous_73464855 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Adult Aged Ankle Joint - physiology Biomechanical Phenomena Cluster Analysis Electromyography Female Gait Gait - physiology Humans Image Processing, Computer-Assisted Knee Joint - physiology Male Middle Aged Muscle, Skeletal - physiology Stroke Stroke - physiopathology |
title | Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A44%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20cluster%20analysis%20for%20gait%20pattern%20classification%20of%20patients%20in%20the%20early%20and%20late%20recovery%20phases%20following%20stroke&rft.jtitle=Gait%20&%20posture&rft.au=Mulroy,%20Sara&rft.date=2003-08-01&rft.volume=18&rft.issue=1&rft.spage=114&rft.epage=125&rft.pages=114-125&rft.issn=0966-6362&rft.eissn=1879-2219&rft_id=info:doi/10.1016/S0966-6362(02)00165-0&rft_dat=%3Cproquest_cross%3E73464855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73464855&rft_id=info:pmid/12855307&rft_els_id=S0966636202001650&rfr_iscdi=true |