Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke

The mixture of gait deviations seen in patients following a stroke is remarkably variable. An objective system for classification of gait patterns for this population could be used to guide treatment planning. Quantitated gait analysis was conducted for 47 individuals at admission to in-patient reha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gait & posture 2003-08, Vol.18 (1), p.114-125
Hauptverfasser: Mulroy, Sara, Gronley, JoAnne, Weiss, Walt, Newsam, Craig, Perry, Jacquelin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue 1
container_start_page 114
container_title Gait & posture
container_volume 18
creator Mulroy, Sara
Gronley, JoAnne
Weiss, Walt
Newsam, Craig
Perry, Jacquelin
description The mixture of gait deviations seen in patients following a stroke is remarkably variable. An objective system for classification of gait patterns for this population could be used to guide treatment planning. Quantitated gait analysis was conducted for 47 individuals at admission to in-patient rehabilitation and again at 6 months post-stroke for 42 subjects. Non-hierarchical cluster analysis was used to classify the gait patterns of patients based on the temporal–spatial and kinematic parameters of walking. Four clusters of patients were identified at both assessment intervals. At the admission test walking velocity, peak knee extension in mid stance and peak dorsiflexion in swing were the three factors that best characterized the groups. At 6 months the explanatory variables were velocity, knee extension in terminal stance, and knee flexion in pre swing. Differences in muscle strength and muscle activation patterns during walking were identified between groups.
doi_str_mv 10.1016/S0966-6362(02)00165-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73464855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0966636202001650</els_id><sourcerecordid>73464855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-aaf5d3304177a5182023c480ecac851c13b774047adebaee3f1ecc7674e4cad53</originalsourceid><addsrcrecordid>eNqFkE2LFDEQhoMo7jj6E5ScRA-tlU6603MSWfyCBQ-651CTrt6NZjpjKrMy_nrTzqBHIRBIPe9b5BHiqYJXClT_-gts-r7pdd--gPYl1KeugXtipQa7adpWbe6L1V_kQjxi_gYARg_tQ3Gh2qHrNNiV-HXNJNMkfTxwoSxxxnjkwHJKWd5gKHKPpQ7mSiBzmILHEtK8ZOok0FxYhlmWW5KEOR5rwygjFpKZfLqjfJT7W2RaGmNMP8N8I7nk9J0eiwcTRqYn53strt-_-3r5sbn6_OHT5durxhu7KQ3i1I1ag1HWYqeGFlrtzQDk0Q-d8kpvrTVgLI60RSI9KfLe9taQ8Th2ei2en3r3Of04EBe3C-wpRpwpHdhZbXqz-FiL7gT6nJgzTW6fww7z0Slwi3T3R7pbjDqoZ5HuoOaenRcctjsa_6XOlivw5gRQ_eZdoOzYV3OexlAlFTem8J8VvwGdgJQN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73464855</pqid></control><display><type>article</type><title>Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Mulroy, Sara ; Gronley, JoAnne ; Weiss, Walt ; Newsam, Craig ; Perry, Jacquelin</creator><creatorcontrib>Mulroy, Sara ; Gronley, JoAnne ; Weiss, Walt ; Newsam, Craig ; Perry, Jacquelin</creatorcontrib><description>The mixture of gait deviations seen in patients following a stroke is remarkably variable. An objective system for classification of gait patterns for this population could be used to guide treatment planning. Quantitated gait analysis was conducted for 47 individuals at admission to in-patient rehabilitation and again at 6 months post-stroke for 42 subjects. Non-hierarchical cluster analysis was used to classify the gait patterns of patients based on the temporal–spatial and kinematic parameters of walking. Four clusters of patients were identified at both assessment intervals. At the admission test walking velocity, peak knee extension in mid stance and peak dorsiflexion in swing were the three factors that best characterized the groups. At 6 months the explanatory variables were velocity, knee extension in terminal stance, and knee flexion in pre swing. Differences in muscle strength and muscle activation patterns during walking were identified between groups.</description><identifier>ISSN: 0966-6362</identifier><identifier>EISSN: 1879-2219</identifier><identifier>DOI: 10.1016/S0966-6362(02)00165-0</identifier><identifier>PMID: 12855307</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Adult ; Aged ; Ankle Joint - physiology ; Biomechanical Phenomena ; Cluster Analysis ; Electromyography ; Female ; Gait ; Gait - physiology ; Humans ; Image Processing, Computer-Assisted ; Knee Joint - physiology ; Male ; Middle Aged ; Muscle, Skeletal - physiology ; Stroke ; Stroke - physiopathology</subject><ispartof>Gait &amp; posture, 2003-08, Vol.18 (1), p.114-125</ispartof><rights>2002 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-aaf5d3304177a5182023c480ecac851c13b774047adebaee3f1ecc7674e4cad53</citedby><cites>FETCH-LOGICAL-c479t-aaf5d3304177a5182023c480ecac851c13b774047adebaee3f1ecc7674e4cad53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0966-6362(02)00165-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12855307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mulroy, Sara</creatorcontrib><creatorcontrib>Gronley, JoAnne</creatorcontrib><creatorcontrib>Weiss, Walt</creatorcontrib><creatorcontrib>Newsam, Craig</creatorcontrib><creatorcontrib>Perry, Jacquelin</creatorcontrib><title>Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke</title><title>Gait &amp; posture</title><addtitle>Gait Posture</addtitle><description>The mixture of gait deviations seen in patients following a stroke is remarkably variable. An objective system for classification of gait patterns for this population could be used to guide treatment planning. Quantitated gait analysis was conducted for 47 individuals at admission to in-patient rehabilitation and again at 6 months post-stroke for 42 subjects. Non-hierarchical cluster analysis was used to classify the gait patterns of patients based on the temporal–spatial and kinematic parameters of walking. Four clusters of patients were identified at both assessment intervals. At the admission test walking velocity, peak knee extension in mid stance and peak dorsiflexion in swing were the three factors that best characterized the groups. At 6 months the explanatory variables were velocity, knee extension in terminal stance, and knee flexion in pre swing. Differences in muscle strength and muscle activation patterns during walking were identified between groups.</description><subject>Adult</subject><subject>Aged</subject><subject>Ankle Joint - physiology</subject><subject>Biomechanical Phenomena</subject><subject>Cluster Analysis</subject><subject>Electromyography</subject><subject>Female</subject><subject>Gait</subject><subject>Gait - physiology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Knee Joint - physiology</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Muscle, Skeletal - physiology</subject><subject>Stroke</subject><subject>Stroke - physiopathology</subject><issn>0966-6362</issn><issn>1879-2219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE2LFDEQhoMo7jj6E5ScRA-tlU6603MSWfyCBQ-651CTrt6NZjpjKrMy_nrTzqBHIRBIPe9b5BHiqYJXClT_-gts-r7pdd--gPYl1KeugXtipQa7adpWbe6L1V_kQjxi_gYARg_tQ3Gh2qHrNNiV-HXNJNMkfTxwoSxxxnjkwHJKWd5gKHKPpQ7mSiBzmILHEtK8ZOok0FxYhlmWW5KEOR5rwygjFpKZfLqjfJT7W2RaGmNMP8N8I7nk9J0eiwcTRqYn53strt-_-3r5sbn6_OHT5durxhu7KQ3i1I1ag1HWYqeGFlrtzQDk0Q-d8kpvrTVgLI60RSI9KfLe9taQ8Th2ei2en3r3Of04EBe3C-wpRpwpHdhZbXqz-FiL7gT6nJgzTW6fww7z0Slwi3T3R7pbjDqoZ5HuoOaenRcctjsa_6XOlivw5gRQ_eZdoOzYV3OexlAlFTem8J8VvwGdgJQN</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Mulroy, Sara</creator><creator>Gronley, JoAnne</creator><creator>Weiss, Walt</creator><creator>Newsam, Craig</creator><creator>Perry, Jacquelin</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030801</creationdate><title>Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke</title><author>Mulroy, Sara ; Gronley, JoAnne ; Weiss, Walt ; Newsam, Craig ; Perry, Jacquelin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-aaf5d3304177a5182023c480ecac851c13b774047adebaee3f1ecc7674e4cad53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Ankle Joint - physiology</topic><topic>Biomechanical Phenomena</topic><topic>Cluster Analysis</topic><topic>Electromyography</topic><topic>Female</topic><topic>Gait</topic><topic>Gait - physiology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Knee Joint - physiology</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Muscle, Skeletal - physiology</topic><topic>Stroke</topic><topic>Stroke - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mulroy, Sara</creatorcontrib><creatorcontrib>Gronley, JoAnne</creatorcontrib><creatorcontrib>Weiss, Walt</creatorcontrib><creatorcontrib>Newsam, Craig</creatorcontrib><creatorcontrib>Perry, Jacquelin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Gait &amp; posture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mulroy, Sara</au><au>Gronley, JoAnne</au><au>Weiss, Walt</au><au>Newsam, Craig</au><au>Perry, Jacquelin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke</atitle><jtitle>Gait &amp; posture</jtitle><addtitle>Gait Posture</addtitle><date>2003-08-01</date><risdate>2003</risdate><volume>18</volume><issue>1</issue><spage>114</spage><epage>125</epage><pages>114-125</pages><issn>0966-6362</issn><eissn>1879-2219</eissn><abstract>The mixture of gait deviations seen in patients following a stroke is remarkably variable. An objective system for classification of gait patterns for this population could be used to guide treatment planning. Quantitated gait analysis was conducted for 47 individuals at admission to in-patient rehabilitation and again at 6 months post-stroke for 42 subjects. Non-hierarchical cluster analysis was used to classify the gait patterns of patients based on the temporal–spatial and kinematic parameters of walking. Four clusters of patients were identified at both assessment intervals. At the admission test walking velocity, peak knee extension in mid stance and peak dorsiflexion in swing were the three factors that best characterized the groups. At 6 months the explanatory variables were velocity, knee extension in terminal stance, and knee flexion in pre swing. Differences in muscle strength and muscle activation patterns during walking were identified between groups.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>12855307</pmid><doi>10.1016/S0966-6362(02)00165-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0966-6362
ispartof Gait & posture, 2003-08, Vol.18 (1), p.114-125
issn 0966-6362
1879-2219
language eng
recordid cdi_proquest_miscellaneous_73464855
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adult
Aged
Ankle Joint - physiology
Biomechanical Phenomena
Cluster Analysis
Electromyography
Female
Gait
Gait - physiology
Humans
Image Processing, Computer-Assisted
Knee Joint - physiology
Male
Middle Aged
Muscle, Skeletal - physiology
Stroke
Stroke - physiopathology
title Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A44%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20cluster%20analysis%20for%20gait%20pattern%20classification%20of%20patients%20in%20the%20early%20and%20late%20recovery%20phases%20following%20stroke&rft.jtitle=Gait%20&%20posture&rft.au=Mulroy,%20Sara&rft.date=2003-08-01&rft.volume=18&rft.issue=1&rft.spage=114&rft.epage=125&rft.pages=114-125&rft.issn=0966-6362&rft.eissn=1879-2219&rft_id=info:doi/10.1016/S0966-6362(02)00165-0&rft_dat=%3Cproquest_cross%3E73464855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73464855&rft_id=info:pmid/12855307&rft_els_id=S0966636202001650&rfr_iscdi=true