Phase-Change InSbTe Nanowires Grown in Situ at Low Temperature by Metal−Organic Chemical Vapor Deposition
Phase-change InSbTe (IST) single crystalline nanowires were successfully synthesized at a low temperature of 250 °C by metalorganic chemical vapor deposition (MOCVD). The growth of IST nanowires by MOCVD, at very high working pressure, was governed by supersaturation. The growth mechanism of the IST...
Gespeichert in:
Veröffentlicht in: | Nano letters 2010-02, Vol.10 (2), p.472-477 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 477 |
---|---|
container_issue | 2 |
container_start_page | 472 |
container_title | Nano letters |
container_volume | 10 |
creator | Ahn, Jun-Ku Park, Kyoung-Woo Jung, Hyun-June Yoon, Soon-Gil |
description | Phase-change InSbTe (IST) single crystalline nanowires were successfully synthesized at a low temperature of 250 °C by metalorganic chemical vapor deposition (MOCVD). The growth of IST nanowires by MOCVD, at very high working pressure, was governed by supersaturation. The growth mechanism of the IST nanowires by MOCVD is addressed in this paper. Under high working pressure, the InTe phase was preferentially formed on the TiAlN electrode, and the InTe protrusions were nucleated on the InTe films under high supersaturation. The Sb was continuously incorporated into the InTe protrusions, which was grown as an IST nanowire. Phase-change-induced memory switching was realized in IST nanowires with a threshold voltage of about 1.6 V. The ability to grow IST nanowires at low temperature by MOCVD should open opportunities for investigation of the nanoscale phase-transition phenomena. |
doi_str_mv | 10.1021/nl903188z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734278148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734278148</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-6ddfe81dfbf8aba20058535830e7f777f041f02d1833fbeabca89a0b592671753</originalsourceid><addsrcrecordid>eNptkMFO3DAQhi1EVWDbAy-AfEEVh7TjONk4x2opsNICldj2Gk2SMWua2MFOtIIn4Mwj8iRNxbJcepo5fPpn_o-xQwFfBcTim21ykEKpxx22L1IJ0TTP493trpI9dhDCHQDkMoWPbC8GkArUdJ_9-bnCQNFshfaW-NzelEviV2jd2ngK_Ny7teXG8hvTDxx7vnBrvqS2I4_94ImXD_ySemxenp6v_S1aU_HZilpTYcN_Y-c8P6XOBdMbZz-xDxqbQJ83c8J-nf1Yzi6ixfX5fPZ9EWEioI-mda1JiVqXWmGJ46-pSmWqJFCmsyzTkAgNcS2UlLokLCtUOUKZ5vE0E1kqJ-zLa27n3f1AoS9aEypqGrTkhlBkMokzJRI1kievZOVdCJ500XnTon8oBBT_1BZbtSN7tEkdypbqLfnmcgSONwCGsb72aCsT3rk4idXY4p3DKhR3bvB2lPGfg38BGW2N2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734278148</pqid></control><display><type>article</type><title>Phase-Change InSbTe Nanowires Grown in Situ at Low Temperature by Metal−Organic Chemical Vapor Deposition</title><source>ACS Publications</source><creator>Ahn, Jun-Ku ; Park, Kyoung-Woo ; Jung, Hyun-June ; Yoon, Soon-Gil</creator><creatorcontrib>Ahn, Jun-Ku ; Park, Kyoung-Woo ; Jung, Hyun-June ; Yoon, Soon-Gil</creatorcontrib><description>Phase-change InSbTe (IST) single crystalline nanowires were successfully synthesized at a low temperature of 250 °C by metalorganic chemical vapor deposition (MOCVD). The growth of IST nanowires by MOCVD, at very high working pressure, was governed by supersaturation. The growth mechanism of the IST nanowires by MOCVD is addressed in this paper. Under high working pressure, the InTe phase was preferentially formed on the TiAlN electrode, and the InTe protrusions were nucleated on the InTe films under high supersaturation. The Sb was continuously incorporated into the InTe protrusions, which was grown as an IST nanowire. Phase-change-induced memory switching was realized in IST nanowires with a threshold voltage of about 1.6 V. The ability to grow IST nanowires at low temperature by MOCVD should open opportunities for investigation of the nanoscale phase-transition phenomena.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl903188z</identifier><identifier>PMID: 20038086</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Materials science ; Methods of nanofabrication ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Physics ; Quantum wires ; Specific phase transitions ; Structural transitions in nanoscale materials</subject><ispartof>Nano letters, 2010-02, Vol.10 (2), p.472-477</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-6ddfe81dfbf8aba20058535830e7f777f041f02d1833fbeabca89a0b592671753</citedby><cites>FETCH-LOGICAL-a410t-6ddfe81dfbf8aba20058535830e7f777f041f02d1833fbeabca89a0b592671753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl903188z$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl903188z$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22428583$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20038086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahn, Jun-Ku</creatorcontrib><creatorcontrib>Park, Kyoung-Woo</creatorcontrib><creatorcontrib>Jung, Hyun-June</creatorcontrib><creatorcontrib>Yoon, Soon-Gil</creatorcontrib><title>Phase-Change InSbTe Nanowires Grown in Situ at Low Temperature by Metal−Organic Chemical Vapor Deposition</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Phase-change InSbTe (IST) single crystalline nanowires were successfully synthesized at a low temperature of 250 °C by metalorganic chemical vapor deposition (MOCVD). The growth of IST nanowires by MOCVD, at very high working pressure, was governed by supersaturation. The growth mechanism of the IST nanowires by MOCVD is addressed in this paper. Under high working pressure, the InTe phase was preferentially formed on the TiAlN electrode, and the InTe protrusions were nucleated on the InTe films under high supersaturation. The Sb was continuously incorporated into the InTe protrusions, which was grown as an IST nanowire. Phase-change-induced memory switching was realized in IST nanowires with a threshold voltage of about 1.6 V. The ability to grow IST nanowires at low temperature by MOCVD should open opportunities for investigation of the nanoscale phase-transition phenomena.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Specific phase transitions</subject><subject>Structural transitions in nanoscale materials</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkMFO3DAQhi1EVWDbAy-AfEEVh7TjONk4x2opsNICldj2Gk2SMWua2MFOtIIn4Mwj8iRNxbJcepo5fPpn_o-xQwFfBcTim21ykEKpxx22L1IJ0TTP493trpI9dhDCHQDkMoWPbC8GkArUdJ_9-bnCQNFshfaW-NzelEviV2jd2ngK_Ny7teXG8hvTDxx7vnBrvqS2I4_94ImXD_ySemxenp6v_S1aU_HZilpTYcN_Y-c8P6XOBdMbZz-xDxqbQJ83c8J-nf1Yzi6ixfX5fPZ9EWEioI-mda1JiVqXWmGJ46-pSmWqJFCmsyzTkAgNcS2UlLokLCtUOUKZ5vE0E1kqJ-zLa27n3f1AoS9aEypqGrTkhlBkMokzJRI1kievZOVdCJ500XnTon8oBBT_1BZbtSN7tEkdypbqLfnmcgSONwCGsb72aCsT3rk4idXY4p3DKhR3bvB2lPGfg38BGW2N2w</recordid><startdate>20100210</startdate><enddate>20100210</enddate><creator>Ahn, Jun-Ku</creator><creator>Park, Kyoung-Woo</creator><creator>Jung, Hyun-June</creator><creator>Yoon, Soon-Gil</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100210</creationdate><title>Phase-Change InSbTe Nanowires Grown in Situ at Low Temperature by Metal−Organic Chemical Vapor Deposition</title><author>Ahn, Jun-Ku ; Park, Kyoung-Woo ; Jung, Hyun-June ; Yoon, Soon-Gil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-6ddfe81dfbf8aba20058535830e7f777f041f02d1833fbeabca89a0b592671753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Specific phase transitions</topic><topic>Structural transitions in nanoscale materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Jun-Ku</creatorcontrib><creatorcontrib>Park, Kyoung-Woo</creatorcontrib><creatorcontrib>Jung, Hyun-June</creatorcontrib><creatorcontrib>Yoon, Soon-Gil</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Jun-Ku</au><au>Park, Kyoung-Woo</au><au>Jung, Hyun-June</au><au>Yoon, Soon-Gil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-Change InSbTe Nanowires Grown in Situ at Low Temperature by Metal−Organic Chemical Vapor Deposition</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-02-10</date><risdate>2010</risdate><volume>10</volume><issue>2</issue><spage>472</spage><epage>477</epage><pages>472-477</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Phase-change InSbTe (IST) single crystalline nanowires were successfully synthesized at a low temperature of 250 °C by metalorganic chemical vapor deposition (MOCVD). The growth of IST nanowires by MOCVD, at very high working pressure, was governed by supersaturation. The growth mechanism of the IST nanowires by MOCVD is addressed in this paper. Under high working pressure, the InTe phase was preferentially formed on the TiAlN electrode, and the InTe protrusions were nucleated on the InTe films under high supersaturation. The Sb was continuously incorporated into the InTe protrusions, which was grown as an IST nanowire. Phase-change-induced memory switching was realized in IST nanowires with a threshold voltage of about 1.6 V. The ability to grow IST nanowires at low temperature by MOCVD should open opportunities for investigation of the nanoscale phase-transition phenomena.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20038086</pmid><doi>10.1021/nl903188z</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2010-02, Vol.10 (2), p.472-477 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_734278148 |
source | ACS Publications |
subjects | Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Equations of state, phase equilibria, and phase transitions Exact sciences and technology Materials science Methods of nanofabrication Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Physics Quantum wires Specific phase transitions Structural transitions in nanoscale materials |
title | Phase-Change InSbTe Nanowires Grown in Situ at Low Temperature by Metal−Organic Chemical Vapor Deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-Change%20InSbTe%20Nanowires%20Grown%20in%20Situ%20at%20Low%20Temperature%20by%20Metal%E2%88%92Organic%20Chemical%20Vapor%20Deposition&rft.jtitle=Nano%20letters&rft.au=Ahn,%20Jun-Ku&rft.date=2010-02-10&rft.volume=10&rft.issue=2&rft.spage=472&rft.epage=477&rft.pages=472-477&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl903188z&rft_dat=%3Cproquest_cross%3E734278148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734278148&rft_id=info:pmid/20038086&rfr_iscdi=true |