Phase-Change InSbTe Nanowires Grown in Situ at Low Temperature by Metal−Organic Chemical Vapor Deposition

Phase-change InSbTe (IST) single crystalline nanowires were successfully synthesized at a low temperature of 250 °C by metalorganic chemical vapor deposition (MOCVD). The growth of IST nanowires by MOCVD, at very high working pressure, was governed by supersaturation. The growth mechanism of the IST...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2010-02, Vol.10 (2), p.472-477
Hauptverfasser: Ahn, Jun-Ku, Park, Kyoung-Woo, Jung, Hyun-June, Yoon, Soon-Gil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 477
container_issue 2
container_start_page 472
container_title Nano letters
container_volume 10
creator Ahn, Jun-Ku
Park, Kyoung-Woo
Jung, Hyun-June
Yoon, Soon-Gil
description Phase-change InSbTe (IST) single crystalline nanowires were successfully synthesized at a low temperature of 250 °C by metalorganic chemical vapor deposition (MOCVD). The growth of IST nanowires by MOCVD, at very high working pressure, was governed by supersaturation. The growth mechanism of the IST nanowires by MOCVD is addressed in this paper. Under high working pressure, the InTe phase was preferentially formed on the TiAlN electrode, and the InTe protrusions were nucleated on the InTe films under high supersaturation. The Sb was continuously incorporated into the InTe protrusions, which was grown as an IST nanowire. Phase-change-induced memory switching was realized in IST nanowires with a threshold voltage of about 1.6 V. The ability to grow IST nanowires at low temperature by MOCVD should open opportunities for investigation of the nanoscale phase-transition phenomena.
doi_str_mv 10.1021/nl903188z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734278148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734278148</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-6ddfe81dfbf8aba20058535830e7f777f041f02d1833fbeabca89a0b592671753</originalsourceid><addsrcrecordid>eNptkMFO3DAQhi1EVWDbAy-AfEEVh7TjONk4x2opsNICldj2Gk2SMWua2MFOtIIn4Mwj8iRNxbJcepo5fPpn_o-xQwFfBcTim21ykEKpxx22L1IJ0TTP493trpI9dhDCHQDkMoWPbC8GkArUdJ_9-bnCQNFshfaW-NzelEviV2jd2ngK_Ny7teXG8hvTDxx7vnBrvqS2I4_94ImXD_ySemxenp6v_S1aU_HZilpTYcN_Y-c8P6XOBdMbZz-xDxqbQJ83c8J-nf1Yzi6ixfX5fPZ9EWEioI-mda1JiVqXWmGJ46-pSmWqJFCmsyzTkAgNcS2UlLokLCtUOUKZ5vE0E1kqJ-zLa27n3f1AoS9aEypqGrTkhlBkMokzJRI1kievZOVdCJ500XnTon8oBBT_1BZbtSN7tEkdypbqLfnmcgSONwCGsb72aCsT3rk4idXY4p3DKhR3bvB2lPGfg38BGW2N2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734278148</pqid></control><display><type>article</type><title>Phase-Change InSbTe Nanowires Grown in Situ at Low Temperature by Metal−Organic Chemical Vapor Deposition</title><source>ACS Publications</source><creator>Ahn, Jun-Ku ; Park, Kyoung-Woo ; Jung, Hyun-June ; Yoon, Soon-Gil</creator><creatorcontrib>Ahn, Jun-Ku ; Park, Kyoung-Woo ; Jung, Hyun-June ; Yoon, Soon-Gil</creatorcontrib><description>Phase-change InSbTe (IST) single crystalline nanowires were successfully synthesized at a low temperature of 250 °C by metalorganic chemical vapor deposition (MOCVD). The growth of IST nanowires by MOCVD, at very high working pressure, was governed by supersaturation. The growth mechanism of the IST nanowires by MOCVD is addressed in this paper. Under high working pressure, the InTe phase was preferentially formed on the TiAlN electrode, and the InTe protrusions were nucleated on the InTe films under high supersaturation. The Sb was continuously incorporated into the InTe protrusions, which was grown as an IST nanowire. Phase-change-induced memory switching was realized in IST nanowires with a threshold voltage of about 1.6 V. The ability to grow IST nanowires at low temperature by MOCVD should open opportunities for investigation of the nanoscale phase-transition phenomena.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl903188z</identifier><identifier>PMID: 20038086</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Materials science ; Methods of nanofabrication ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Physics ; Quantum wires ; Specific phase transitions ; Structural transitions in nanoscale materials</subject><ispartof>Nano letters, 2010-02, Vol.10 (2), p.472-477</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-6ddfe81dfbf8aba20058535830e7f777f041f02d1833fbeabca89a0b592671753</citedby><cites>FETCH-LOGICAL-a410t-6ddfe81dfbf8aba20058535830e7f777f041f02d1833fbeabca89a0b592671753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl903188z$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl903188z$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22428583$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20038086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahn, Jun-Ku</creatorcontrib><creatorcontrib>Park, Kyoung-Woo</creatorcontrib><creatorcontrib>Jung, Hyun-June</creatorcontrib><creatorcontrib>Yoon, Soon-Gil</creatorcontrib><title>Phase-Change InSbTe Nanowires Grown in Situ at Low Temperature by Metal−Organic Chemical Vapor Deposition</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Phase-change InSbTe (IST) single crystalline nanowires were successfully synthesized at a low temperature of 250 °C by metalorganic chemical vapor deposition (MOCVD). The growth of IST nanowires by MOCVD, at very high working pressure, was governed by supersaturation. The growth mechanism of the IST nanowires by MOCVD is addressed in this paper. Under high working pressure, the InTe phase was preferentially formed on the TiAlN electrode, and the InTe protrusions were nucleated on the InTe films under high supersaturation. The Sb was continuously incorporated into the InTe protrusions, which was grown as an IST nanowire. Phase-change-induced memory switching was realized in IST nanowires with a threshold voltage of about 1.6 V. The ability to grow IST nanowires at low temperature by MOCVD should open opportunities for investigation of the nanoscale phase-transition phenomena.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Specific phase transitions</subject><subject>Structural transitions in nanoscale materials</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkMFO3DAQhi1EVWDbAy-AfEEVh7TjONk4x2opsNICldj2Gk2SMWua2MFOtIIn4Mwj8iRNxbJcepo5fPpn_o-xQwFfBcTim21ykEKpxx22L1IJ0TTP493trpI9dhDCHQDkMoWPbC8GkArUdJ_9-bnCQNFshfaW-NzelEviV2jd2ngK_Ny7teXG8hvTDxx7vnBrvqS2I4_94ImXD_ySemxenp6v_S1aU_HZilpTYcN_Y-c8P6XOBdMbZz-xDxqbQJ83c8J-nf1Yzi6ixfX5fPZ9EWEioI-mda1JiVqXWmGJ46-pSmWqJFCmsyzTkAgNcS2UlLokLCtUOUKZ5vE0E1kqJ-zLa27n3f1AoS9aEypqGrTkhlBkMokzJRI1kievZOVdCJ500XnTon8oBBT_1BZbtSN7tEkdypbqLfnmcgSONwCGsb72aCsT3rk4idXY4p3DKhR3bvB2lPGfg38BGW2N2w</recordid><startdate>20100210</startdate><enddate>20100210</enddate><creator>Ahn, Jun-Ku</creator><creator>Park, Kyoung-Woo</creator><creator>Jung, Hyun-June</creator><creator>Yoon, Soon-Gil</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100210</creationdate><title>Phase-Change InSbTe Nanowires Grown in Situ at Low Temperature by Metal−Organic Chemical Vapor Deposition</title><author>Ahn, Jun-Ku ; Park, Kyoung-Woo ; Jung, Hyun-June ; Yoon, Soon-Gil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-6ddfe81dfbf8aba20058535830e7f777f041f02d1833fbeabca89a0b592671753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Specific phase transitions</topic><topic>Structural transitions in nanoscale materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Jun-Ku</creatorcontrib><creatorcontrib>Park, Kyoung-Woo</creatorcontrib><creatorcontrib>Jung, Hyun-June</creatorcontrib><creatorcontrib>Yoon, Soon-Gil</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Jun-Ku</au><au>Park, Kyoung-Woo</au><au>Jung, Hyun-June</au><au>Yoon, Soon-Gil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-Change InSbTe Nanowires Grown in Situ at Low Temperature by Metal−Organic Chemical Vapor Deposition</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-02-10</date><risdate>2010</risdate><volume>10</volume><issue>2</issue><spage>472</spage><epage>477</epage><pages>472-477</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Phase-change InSbTe (IST) single crystalline nanowires were successfully synthesized at a low temperature of 250 °C by metalorganic chemical vapor deposition (MOCVD). The growth of IST nanowires by MOCVD, at very high working pressure, was governed by supersaturation. The growth mechanism of the IST nanowires by MOCVD is addressed in this paper. Under high working pressure, the InTe phase was preferentially formed on the TiAlN electrode, and the InTe protrusions were nucleated on the InTe films under high supersaturation. The Sb was continuously incorporated into the InTe protrusions, which was grown as an IST nanowire. Phase-change-induced memory switching was realized in IST nanowires with a threshold voltage of about 1.6 V. The ability to grow IST nanowires at low temperature by MOCVD should open opportunities for investigation of the nanoscale phase-transition phenomena.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20038086</pmid><doi>10.1021/nl903188z</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2010-02, Vol.10 (2), p.472-477
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_734278148
source ACS Publications
subjects Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Materials science
Methods of nanofabrication
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Physics
Quantum wires
Specific phase transitions
Structural transitions in nanoscale materials
title Phase-Change InSbTe Nanowires Grown in Situ at Low Temperature by Metal−Organic Chemical Vapor Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-Change%20InSbTe%20Nanowires%20Grown%20in%20Situ%20at%20Low%20Temperature%20by%20Metal%E2%88%92Organic%20Chemical%20Vapor%20Deposition&rft.jtitle=Nano%20letters&rft.au=Ahn,%20Jun-Ku&rft.date=2010-02-10&rft.volume=10&rft.issue=2&rft.spage=472&rft.epage=477&rft.pages=472-477&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl903188z&rft_dat=%3Cproquest_cross%3E734278148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734278148&rft_id=info:pmid/20038086&rfr_iscdi=true