Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution

The link between the spectral shape of the beam attenuation spectrum and the shape of the particle size distribution (PSD) of oceanic particles is revisited to evaluate the extent to which one can be predicted from the other. Assuming a hyperbolic (power-law) PSD, N(D) ? D(-xi), past studies have fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2001-09, Vol.40 (27), p.4885-4893
Hauptverfasser: Boss, E, Twardowski, M S, Herring, S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4893
container_issue 27
container_start_page 4885
container_title Applied Optics
container_volume 40
creator Boss, E
Twardowski, M S
Herring, S
description The link between the spectral shape of the beam attenuation spectrum and the shape of the particle size distribution (PSD) of oceanic particles is revisited to evaluate the extent to which one can be predicted from the other. Assuming a hyperbolic (power-law) PSD, N(D) ? D(-xi), past studies have found for an infinite distribution of nonabsorbing spheres with a constant index of refraction that the attenuation spectrum is hyperbolic and that the attenuation spectral slope gamma is related to the PSD slope xi by xi = gamma + 3. Here we add a correction to this model because of the finite size of the biggest particle in the population. This inversion model is given by xi = gamma + 3 - 0.5 exp(-6gamma). In most oceanic observations xi > 3, and the deviation between these two models is negligible. To test the robustness of this inversion, we perturbed its assumptions by allowing for populations of particles that are nonspherical, or absorbing, or with an index of refraction that changes with wavelength. We found the model to provide a good fit for the range of parameters most often encountered in the ocean. In addition, we found that the particulate attenuation spectrum, c(p)(lambda), is well described by a hyperbolic relation to the wavelength c(p) ? lambda(-gamma) throughout the range of the investigated parameters, even when the inversion model does not apply. This implies that knowledge of the particulate attenuation at two visible wavelengths could provide, to a high degree of accuracy, the particulate attenuation at other wavelengths in the visible spectrum.
doi_str_mv 10.1364/AO.40.004885
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734274820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734274820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-a0dc999a1f02f9f73c925ac086a3f4f3fb5e5c302602602bce519fb3b0ed41023</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMotlZ3riU7N07Nc2ayLMUXFLpQwd2QydzQyLxMMoKC_91OW3AlXLiX7x7O4kPokpI55am4XazngswJEXkuj9CUSq4SIRk7Hm-pEsrytwk6C-GdEC6Fyk7RhOY8JZLTKfp53ugecGdx3ADutY_ODLWOgEvQDdYxQjvo6LoWhx5M9MM2bCvsYsCu_QQfxlfscFdG7dqdJfynDO4bcOVC9K4cRuc5OrG6DnBx2DP0en_3snxMVuuHp-VilRjOaUw0qYxSSlNLmFU240YxqQ3JU82tsNyWEqThhKW7KQ1IqmzJSwKVoITxGbree3vffQwQYtG4YKCudQvdEIqMC5aJnJEtebMnje9C8GCL3rtG-6-CkmLsu1isC0GKfd9b_OogHsoGqj_4UDD_BemOfVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734274820</pqid></control><display><type>article</type><title>Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Boss, E ; Twardowski, M S ; Herring, S</creator><creatorcontrib>Boss, E ; Twardowski, M S ; Herring, S</creatorcontrib><description>The link between the spectral shape of the beam attenuation spectrum and the shape of the particle size distribution (PSD) of oceanic particles is revisited to evaluate the extent to which one can be predicted from the other. Assuming a hyperbolic (power-law) PSD, N(D) ? D(-xi), past studies have found for an infinite distribution of nonabsorbing spheres with a constant index of refraction that the attenuation spectrum is hyperbolic and that the attenuation spectral slope gamma is related to the PSD slope xi by xi = gamma + 3. Here we add a correction to this model because of the finite size of the biggest particle in the population. This inversion model is given by xi = gamma + 3 - 0.5 exp(-6gamma). In most oceanic observations xi &gt; 3, and the deviation between these two models is negligible. To test the robustness of this inversion, we perturbed its assumptions by allowing for populations of particles that are nonspherical, or absorbing, or with an index of refraction that changes with wavelength. We found the model to provide a good fit for the range of parameters most often encountered in the ocean. In addition, we found that the particulate attenuation spectrum, c(p)(lambda), is well described by a hyperbolic relation to the wavelength c(p) ? lambda(-gamma) throughout the range of the investigated parameters, even when the inversion model does not apply. This implies that knowledge of the particulate attenuation at two visible wavelengths could provide, to a high degree of accuracy, the particulate attenuation at other wavelengths in the visible spectrum.</description><identifier>ISSN: 1559-128X</identifier><identifier>ISSN: 0003-6935</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.40.004885</identifier><identifier>PMID: 18360531</identifier><language>eng</language><publisher>United States</publisher><ispartof>Applied Optics, 2001-09, Vol.40 (27), p.4885-4893</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-a0dc999a1f02f9f73c925ac086a3f4f3fb5e5c302602602bce519fb3b0ed41023</citedby><cites>FETCH-LOGICAL-c331t-a0dc999a1f02f9f73c925ac086a3f4f3fb5e5c302602602bce519fb3b0ed41023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18360531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boss, E</creatorcontrib><creatorcontrib>Twardowski, M S</creatorcontrib><creatorcontrib>Herring, S</creatorcontrib><title>Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>The link between the spectral shape of the beam attenuation spectrum and the shape of the particle size distribution (PSD) of oceanic particles is revisited to evaluate the extent to which one can be predicted from the other. Assuming a hyperbolic (power-law) PSD, N(D) ? D(-xi), past studies have found for an infinite distribution of nonabsorbing spheres with a constant index of refraction that the attenuation spectrum is hyperbolic and that the attenuation spectral slope gamma is related to the PSD slope xi by xi = gamma + 3. Here we add a correction to this model because of the finite size of the biggest particle in the population. This inversion model is given by xi = gamma + 3 - 0.5 exp(-6gamma). In most oceanic observations xi &gt; 3, and the deviation between these two models is negligible. To test the robustness of this inversion, we perturbed its assumptions by allowing for populations of particles that are nonspherical, or absorbing, or with an index of refraction that changes with wavelength. We found the model to provide a good fit for the range of parameters most often encountered in the ocean. In addition, we found that the particulate attenuation spectrum, c(p)(lambda), is well described by a hyperbolic relation to the wavelength c(p) ? lambda(-gamma) throughout the range of the investigated parameters, even when the inversion model does not apply. This implies that knowledge of the particulate attenuation at two visible wavelengths could provide, to a high degree of accuracy, the particulate attenuation at other wavelengths in the visible spectrum.</description><issn>1559-128X</issn><issn>0003-6935</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEURoMotlZ3riU7N07Nc2ayLMUXFLpQwd2QydzQyLxMMoKC_91OW3AlXLiX7x7O4kPokpI55am4XazngswJEXkuj9CUSq4SIRk7Hm-pEsrytwk6C-GdEC6Fyk7RhOY8JZLTKfp53ugecGdx3ADutY_ODLWOgEvQDdYxQjvo6LoWhx5M9MM2bCvsYsCu_QQfxlfscFdG7dqdJfynDO4bcOVC9K4cRuc5OrG6DnBx2DP0en_3snxMVuuHp-VilRjOaUw0qYxSSlNLmFU240YxqQ3JU82tsNyWEqThhKW7KQ1IqmzJSwKVoITxGbree3vffQwQYtG4YKCudQvdEIqMC5aJnJEtebMnje9C8GCL3rtG-6-CkmLsu1isC0GKfd9b_OogHsoGqj_4UDD_BemOfVI</recordid><startdate>20010920</startdate><enddate>20010920</enddate><creator>Boss, E</creator><creator>Twardowski, M S</creator><creator>Herring, S</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010920</creationdate><title>Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution</title><author>Boss, E ; Twardowski, M S ; Herring, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-a0dc999a1f02f9f73c925ac086a3f4f3fb5e5c302602602bce519fb3b0ed41023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boss, E</creatorcontrib><creatorcontrib>Twardowski, M S</creatorcontrib><creatorcontrib>Herring, S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boss, E</au><au>Twardowski, M S</au><au>Herring, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>2001-09-20</date><risdate>2001</risdate><volume>40</volume><issue>27</issue><spage>4885</spage><epage>4893</epage><pages>4885-4893</pages><issn>1559-128X</issn><issn>0003-6935</issn><eissn>1539-4522</eissn><abstract>The link between the spectral shape of the beam attenuation spectrum and the shape of the particle size distribution (PSD) of oceanic particles is revisited to evaluate the extent to which one can be predicted from the other. Assuming a hyperbolic (power-law) PSD, N(D) ? D(-xi), past studies have found for an infinite distribution of nonabsorbing spheres with a constant index of refraction that the attenuation spectrum is hyperbolic and that the attenuation spectral slope gamma is related to the PSD slope xi by xi = gamma + 3. Here we add a correction to this model because of the finite size of the biggest particle in the population. This inversion model is given by xi = gamma + 3 - 0.5 exp(-6gamma). In most oceanic observations xi &gt; 3, and the deviation between these two models is negligible. To test the robustness of this inversion, we perturbed its assumptions by allowing for populations of particles that are nonspherical, or absorbing, or with an index of refraction that changes with wavelength. We found the model to provide a good fit for the range of parameters most often encountered in the ocean. In addition, we found that the particulate attenuation spectrum, c(p)(lambda), is well described by a hyperbolic relation to the wavelength c(p) ? lambda(-gamma) throughout the range of the investigated parameters, even when the inversion model does not apply. This implies that knowledge of the particulate attenuation at two visible wavelengths could provide, to a high degree of accuracy, the particulate attenuation at other wavelengths in the visible spectrum.</abstract><cop>United States</cop><pmid>18360531</pmid><doi>10.1364/AO.40.004885</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied Optics, 2001-09, Vol.40 (27), p.4885-4893
issn 1559-128X
0003-6935
1539-4522
language eng
recordid cdi_proquest_miscellaneous_734274820
source Alma/SFX Local Collection; Optica Publishing Group Journals
title Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20of%20the%20particulate%20beam%20attenuation%20spectrum%20and%20its%20inversion%20to%20obtain%20the%20shape%20of%20the%20particulate%20size%20distribution&rft.jtitle=Applied%20Optics&rft.au=Boss,%20E&rft.date=2001-09-20&rft.volume=40&rft.issue=27&rft.spage=4885&rft.epage=4893&rft.pages=4885-4893&rft.issn=1559-128X&rft.eissn=1539-4522&rft_id=info:doi/10.1364/AO.40.004885&rft_dat=%3Cproquest_cross%3E734274820%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734274820&rft_id=info:pmid/18360531&rfr_iscdi=true