Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution
The link between the spectral shape of the beam attenuation spectrum and the shape of the particle size distribution (PSD) of oceanic particles is revisited to evaluate the extent to which one can be predicted from the other. Assuming a hyperbolic (power-law) PSD, N(D) ? D(-xi), past studies have fo...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2001-09, Vol.40 (27), p.4885-4893 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4893 |
---|---|
container_issue | 27 |
container_start_page | 4885 |
container_title | Applied Optics |
container_volume | 40 |
creator | Boss, E Twardowski, M S Herring, S |
description | The link between the spectral shape of the beam attenuation spectrum and the shape of the particle size distribution (PSD) of oceanic particles is revisited to evaluate the extent to which one can be predicted from the other. Assuming a hyperbolic (power-law) PSD, N(D) ? D(-xi), past studies have found for an infinite distribution of nonabsorbing spheres with a constant index of refraction that the attenuation spectrum is hyperbolic and that the attenuation spectral slope gamma is related to the PSD slope xi by xi = gamma + 3. Here we add a correction to this model because of the finite size of the biggest particle in the population. This inversion model is given by xi = gamma + 3 - 0.5 exp(-6gamma). In most oceanic observations xi > 3, and the deviation between these two models is negligible. To test the robustness of this inversion, we perturbed its assumptions by allowing for populations of particles that are nonspherical, or absorbing, or with an index of refraction that changes with wavelength. We found the model to provide a good fit for the range of parameters most often encountered in the ocean. In addition, we found that the particulate attenuation spectrum, c(p)(lambda), is well described by a hyperbolic relation to the wavelength c(p) ? lambda(-gamma) throughout the range of the investigated parameters, even when the inversion model does not apply. This implies that knowledge of the particulate attenuation at two visible wavelengths could provide, to a high degree of accuracy, the particulate attenuation at other wavelengths in the visible spectrum. |
doi_str_mv | 10.1364/AO.40.004885 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734274820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734274820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-a0dc999a1f02f9f73c925ac086a3f4f3fb5e5c302602602bce519fb3b0ed41023</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMotlZ3riU7N07Nc2ayLMUXFLpQwd2QydzQyLxMMoKC_91OW3AlXLiX7x7O4kPokpI55am4XazngswJEXkuj9CUSq4SIRk7Hm-pEsrytwk6C-GdEC6Fyk7RhOY8JZLTKfp53ugecGdx3ADutY_ODLWOgEvQDdYxQjvo6LoWhx5M9MM2bCvsYsCu_QQfxlfscFdG7dqdJfynDO4bcOVC9K4cRuc5OrG6DnBx2DP0en_3snxMVuuHp-VilRjOaUw0qYxSSlNLmFU240YxqQ3JU82tsNyWEqThhKW7KQ1IqmzJSwKVoITxGbree3vffQwQYtG4YKCudQvdEIqMC5aJnJEtebMnje9C8GCL3rtG-6-CkmLsu1isC0GKfd9b_OogHsoGqj_4UDD_BemOfVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734274820</pqid></control><display><type>article</type><title>Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Boss, E ; Twardowski, M S ; Herring, S</creator><creatorcontrib>Boss, E ; Twardowski, M S ; Herring, S</creatorcontrib><description>The link between the spectral shape of the beam attenuation spectrum and the shape of the particle size distribution (PSD) of oceanic particles is revisited to evaluate the extent to which one can be predicted from the other. Assuming a hyperbolic (power-law) PSD, N(D) ? D(-xi), past studies have found for an infinite distribution of nonabsorbing spheres with a constant index of refraction that the attenuation spectrum is hyperbolic and that the attenuation spectral slope gamma is related to the PSD slope xi by xi = gamma + 3. Here we add a correction to this model because of the finite size of the biggest particle in the population. This inversion model is given by xi = gamma + 3 - 0.5 exp(-6gamma). In most oceanic observations xi > 3, and the deviation between these two models is negligible. To test the robustness of this inversion, we perturbed its assumptions by allowing for populations of particles that are nonspherical, or absorbing, or with an index of refraction that changes with wavelength. We found the model to provide a good fit for the range of parameters most often encountered in the ocean. In addition, we found that the particulate attenuation spectrum, c(p)(lambda), is well described by a hyperbolic relation to the wavelength c(p) ? lambda(-gamma) throughout the range of the investigated parameters, even when the inversion model does not apply. This implies that knowledge of the particulate attenuation at two visible wavelengths could provide, to a high degree of accuracy, the particulate attenuation at other wavelengths in the visible spectrum.</description><identifier>ISSN: 1559-128X</identifier><identifier>ISSN: 0003-6935</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.40.004885</identifier><identifier>PMID: 18360531</identifier><language>eng</language><publisher>United States</publisher><ispartof>Applied Optics, 2001-09, Vol.40 (27), p.4885-4893</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-a0dc999a1f02f9f73c925ac086a3f4f3fb5e5c302602602bce519fb3b0ed41023</citedby><cites>FETCH-LOGICAL-c331t-a0dc999a1f02f9f73c925ac086a3f4f3fb5e5c302602602bce519fb3b0ed41023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18360531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boss, E</creatorcontrib><creatorcontrib>Twardowski, M S</creatorcontrib><creatorcontrib>Herring, S</creatorcontrib><title>Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>The link between the spectral shape of the beam attenuation spectrum and the shape of the particle size distribution (PSD) of oceanic particles is revisited to evaluate the extent to which one can be predicted from the other. Assuming a hyperbolic (power-law) PSD, N(D) ? D(-xi), past studies have found for an infinite distribution of nonabsorbing spheres with a constant index of refraction that the attenuation spectrum is hyperbolic and that the attenuation spectral slope gamma is related to the PSD slope xi by xi = gamma + 3. Here we add a correction to this model because of the finite size of the biggest particle in the population. This inversion model is given by xi = gamma + 3 - 0.5 exp(-6gamma). In most oceanic observations xi > 3, and the deviation between these two models is negligible. To test the robustness of this inversion, we perturbed its assumptions by allowing for populations of particles that are nonspherical, or absorbing, or with an index of refraction that changes with wavelength. We found the model to provide a good fit for the range of parameters most often encountered in the ocean. In addition, we found that the particulate attenuation spectrum, c(p)(lambda), is well described by a hyperbolic relation to the wavelength c(p) ? lambda(-gamma) throughout the range of the investigated parameters, even when the inversion model does not apply. This implies that knowledge of the particulate attenuation at two visible wavelengths could provide, to a high degree of accuracy, the particulate attenuation at other wavelengths in the visible spectrum.</description><issn>1559-128X</issn><issn>0003-6935</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEURoMotlZ3riU7N07Nc2ayLMUXFLpQwd2QydzQyLxMMoKC_91OW3AlXLiX7x7O4kPokpI55am4XazngswJEXkuj9CUSq4SIRk7Hm-pEsrytwk6C-GdEC6Fyk7RhOY8JZLTKfp53ugecGdx3ADutY_ODLWOgEvQDdYxQjvo6LoWhx5M9MM2bCvsYsCu_QQfxlfscFdG7dqdJfynDO4bcOVC9K4cRuc5OrG6DnBx2DP0en_3snxMVuuHp-VilRjOaUw0qYxSSlNLmFU240YxqQ3JU82tsNyWEqThhKW7KQ1IqmzJSwKVoITxGbree3vffQwQYtG4YKCudQvdEIqMC5aJnJEtebMnje9C8GCL3rtG-6-CkmLsu1isC0GKfd9b_OogHsoGqj_4UDD_BemOfVI</recordid><startdate>20010920</startdate><enddate>20010920</enddate><creator>Boss, E</creator><creator>Twardowski, M S</creator><creator>Herring, S</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010920</creationdate><title>Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution</title><author>Boss, E ; Twardowski, M S ; Herring, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-a0dc999a1f02f9f73c925ac086a3f4f3fb5e5c302602602bce519fb3b0ed41023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boss, E</creatorcontrib><creatorcontrib>Twardowski, M S</creatorcontrib><creatorcontrib>Herring, S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boss, E</au><au>Twardowski, M S</au><au>Herring, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>2001-09-20</date><risdate>2001</risdate><volume>40</volume><issue>27</issue><spage>4885</spage><epage>4893</epage><pages>4885-4893</pages><issn>1559-128X</issn><issn>0003-6935</issn><eissn>1539-4522</eissn><abstract>The link between the spectral shape of the beam attenuation spectrum and the shape of the particle size distribution (PSD) of oceanic particles is revisited to evaluate the extent to which one can be predicted from the other. Assuming a hyperbolic (power-law) PSD, N(D) ? D(-xi), past studies have found for an infinite distribution of nonabsorbing spheres with a constant index of refraction that the attenuation spectrum is hyperbolic and that the attenuation spectral slope gamma is related to the PSD slope xi by xi = gamma + 3. Here we add a correction to this model because of the finite size of the biggest particle in the population. This inversion model is given by xi = gamma + 3 - 0.5 exp(-6gamma). In most oceanic observations xi > 3, and the deviation between these two models is negligible. To test the robustness of this inversion, we perturbed its assumptions by allowing for populations of particles that are nonspherical, or absorbing, or with an index of refraction that changes with wavelength. We found the model to provide a good fit for the range of parameters most often encountered in the ocean. In addition, we found that the particulate attenuation spectrum, c(p)(lambda), is well described by a hyperbolic relation to the wavelength c(p) ? lambda(-gamma) throughout the range of the investigated parameters, even when the inversion model does not apply. This implies that knowledge of the particulate attenuation at two visible wavelengths could provide, to a high degree of accuracy, the particulate attenuation at other wavelengths in the visible spectrum.</abstract><cop>United States</cop><pmid>18360531</pmid><doi>10.1364/AO.40.004885</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied Optics, 2001-09, Vol.40 (27), p.4885-4893 |
issn | 1559-128X 0003-6935 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_734274820 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
title | Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20of%20the%20particulate%20beam%20attenuation%20spectrum%20and%20its%20inversion%20to%20obtain%20the%20shape%20of%20the%20particulate%20size%20distribution&rft.jtitle=Applied%20Optics&rft.au=Boss,%20E&rft.date=2001-09-20&rft.volume=40&rft.issue=27&rft.spage=4885&rft.epage=4893&rft.pages=4885-4893&rft.issn=1559-128X&rft.eissn=1539-4522&rft_id=info:doi/10.1364/AO.40.004885&rft_dat=%3Cproquest_cross%3E734274820%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734274820&rft_id=info:pmid/18360531&rfr_iscdi=true |