Lidar equations for turbid media with pulse stretching
Lidar equations for a system with multiple-scattering beam spreading and pulse stretching are developed from an analytical model for the beam spread function. The resulting lidar equations are transparent to the physics and with some simple approximations for system transfer functions become mathema...
Gespeichert in:
Veröffentlicht in: | Applied Optics 1999-04, Vol.38 (12), p.2384-2397 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2397 |
---|---|
container_issue | 12 |
container_start_page | 2384 |
container_title | Applied Optics |
container_volume | 38 |
creator | Walker, R E McLean, J W |
description | Lidar equations for a system with multiple-scattering beam spreading and pulse stretching are developed from an analytical model for the beam spread function. The resulting lidar equations are transparent to the physics and with some simple approximations for system transfer functions become mathematically simple engineering models for system studies. Application to and comparison with a variety of lidar applications in ocean environments (turbidity and bathymetry) and clouds (aerosol scattering) are presented. These examples provide model validation. The lidar model developed represents a significant extension beyond historical lidar models that exclude pulse stretching. Their mathematical simplicity should foster use in a broader class of problems involving light propagation in turbid media. |
doi_str_mv | 10.1364/AO.38.002384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734272955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734272955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-cd6e802e67aba96d2c66572c27ac854c8469792ff88f010e3616a35c5dc4c07b3</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMotlZ3riU7N07NOzfLUnxBoRsFdyGTydhI22mTDOK_d0oLru7h8nHgfAjdUjKlXInH2XLKYUoI4yDO0JhKbiohGTs_ZGkqyuBzhK5y_iaES2H0JRpR4NQAEWOkFrFxCYd970rsthm3XcKlT3Vs8CY00eGfWFZ4169zwLmkUPwqbr-u0UXrhtfN6U7Qx_PT-_y1Wixf3uazReUZQKl8owIQFpR2tTOqYV4pqZln2nmQwoNQRhvWtgAtoSRwRZXj0svGC090zSfo_ti7S92-D7nYTcw-rNduG7o-W80F08xIOZAPR9KnLucUWrtLcePSr6XEHkTZ2dJysEdRA353Ku7rYec_fDLD_wATzGJN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734272955</pqid></control><display><type>article</type><title>Lidar equations for turbid media with pulse stretching</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Walker, R E ; McLean, J W</creator><creatorcontrib>Walker, R E ; McLean, J W</creatorcontrib><description>Lidar equations for a system with multiple-scattering beam spreading and pulse stretching are developed from an analytical model for the beam spread function. The resulting lidar equations are transparent to the physics and with some simple approximations for system transfer functions become mathematically simple engineering models for system studies. Application to and comparison with a variety of lidar applications in ocean environments (turbidity and bathymetry) and clouds (aerosol scattering) are presented. These examples provide model validation. The lidar model developed represents a significant extension beyond historical lidar models that exclude pulse stretching. Their mathematical simplicity should foster use in a broader class of problems involving light propagation in turbid media.</description><identifier>ISSN: 1559-128X</identifier><identifier>ISSN: 0003-6935</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.38.002384</identifier><identifier>PMID: 18319804</identifier><language>eng</language><publisher>United States</publisher><ispartof>Applied Optics, 1999-04, Vol.38 (12), p.2384-2397</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-cd6e802e67aba96d2c66572c27ac854c8469792ff88f010e3616a35c5dc4c07b3</citedby><cites>FETCH-LOGICAL-c288t-cd6e802e67aba96d2c66572c27ac854c8469792ff88f010e3616a35c5dc4c07b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18319804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walker, R E</creatorcontrib><creatorcontrib>McLean, J W</creatorcontrib><title>Lidar equations for turbid media with pulse stretching</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>Lidar equations for a system with multiple-scattering beam spreading and pulse stretching are developed from an analytical model for the beam spread function. The resulting lidar equations are transparent to the physics and with some simple approximations for system transfer functions become mathematically simple engineering models for system studies. Application to and comparison with a variety of lidar applications in ocean environments (turbidity and bathymetry) and clouds (aerosol scattering) are presented. These examples provide model validation. The lidar model developed represents a significant extension beyond historical lidar models that exclude pulse stretching. Their mathematical simplicity should foster use in a broader class of problems involving light propagation in turbid media.</description><issn>1559-128X</issn><issn>0003-6935</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEUhYMotlZ3riU7N07NOzfLUnxBoRsFdyGTydhI22mTDOK_d0oLru7h8nHgfAjdUjKlXInH2XLKYUoI4yDO0JhKbiohGTs_ZGkqyuBzhK5y_iaES2H0JRpR4NQAEWOkFrFxCYd970rsthm3XcKlT3Vs8CY00eGfWFZ4169zwLmkUPwqbr-u0UXrhtfN6U7Qx_PT-_y1Wixf3uazReUZQKl8owIQFpR2tTOqYV4pqZln2nmQwoNQRhvWtgAtoSRwRZXj0svGC090zSfo_ti7S92-D7nYTcw-rNduG7o-W80F08xIOZAPR9KnLucUWrtLcePSr6XEHkTZ2dJysEdRA353Ku7rYec_fDLD_wATzGJN</recordid><startdate>19990420</startdate><enddate>19990420</enddate><creator>Walker, R E</creator><creator>McLean, J W</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19990420</creationdate><title>Lidar equations for turbid media with pulse stretching</title><author>Walker, R E ; McLean, J W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-cd6e802e67aba96d2c66572c27ac854c8469792ff88f010e3616a35c5dc4c07b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walker, R E</creatorcontrib><creatorcontrib>McLean, J W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walker, R E</au><au>McLean, J W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lidar equations for turbid media with pulse stretching</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>1999-04-20</date><risdate>1999</risdate><volume>38</volume><issue>12</issue><spage>2384</spage><epage>2397</epage><pages>2384-2397</pages><issn>1559-128X</issn><issn>0003-6935</issn><eissn>1539-4522</eissn><abstract>Lidar equations for a system with multiple-scattering beam spreading and pulse stretching are developed from an analytical model for the beam spread function. The resulting lidar equations are transparent to the physics and with some simple approximations for system transfer functions become mathematically simple engineering models for system studies. Application to and comparison with a variety of lidar applications in ocean environments (turbidity and bathymetry) and clouds (aerosol scattering) are presented. These examples provide model validation. The lidar model developed represents a significant extension beyond historical lidar models that exclude pulse stretching. Their mathematical simplicity should foster use in a broader class of problems involving light propagation in turbid media.</abstract><cop>United States</cop><pmid>18319804</pmid><doi>10.1364/AO.38.002384</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied Optics, 1999-04, Vol.38 (12), p.2384-2397 |
issn | 1559-128X 0003-6935 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_734272955 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
title | Lidar equations for turbid media with pulse stretching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lidar%20equations%20for%20turbid%20media%20with%20pulse%20stretching&rft.jtitle=Applied%20Optics&rft.au=Walker,%20R%20E&rft.date=1999-04-20&rft.volume=38&rft.issue=12&rft.spage=2384&rft.epage=2397&rft.pages=2384-2397&rft.issn=1559-128X&rft.eissn=1539-4522&rft_id=info:doi/10.1364/AO.38.002384&rft_dat=%3Cproquest_cross%3E734272955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734272955&rft_id=info:pmid/18319804&rfr_iscdi=true |