Lidar equations for turbid media with pulse stretching

Lidar equations for a system with multiple-scattering beam spreading and pulse stretching are developed from an analytical model for the beam spread function. The resulting lidar equations are transparent to the physics and with some simple approximations for system transfer functions become mathema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 1999-04, Vol.38 (12), p.2384-2397
Hauptverfasser: Walker, R E, McLean, J W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2397
container_issue 12
container_start_page 2384
container_title Applied Optics
container_volume 38
creator Walker, R E
McLean, J W
description Lidar equations for a system with multiple-scattering beam spreading and pulse stretching are developed from an analytical model for the beam spread function. The resulting lidar equations are transparent to the physics and with some simple approximations for system transfer functions become mathematically simple engineering models for system studies. Application to and comparison with a variety of lidar applications in ocean environments (turbidity and bathymetry) and clouds (aerosol scattering) are presented. These examples provide model validation. The lidar model developed represents a significant extension beyond historical lidar models that exclude pulse stretching. Their mathematical simplicity should foster use in a broader class of problems involving light propagation in turbid media.
doi_str_mv 10.1364/AO.38.002384
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734272955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734272955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-cd6e802e67aba96d2c66572c27ac854c8469792ff88f010e3616a35c5dc4c07b3</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMotlZ3riU7N07NOzfLUnxBoRsFdyGTydhI22mTDOK_d0oLru7h8nHgfAjdUjKlXInH2XLKYUoI4yDO0JhKbiohGTs_ZGkqyuBzhK5y_iaES2H0JRpR4NQAEWOkFrFxCYd970rsthm3XcKlT3Vs8CY00eGfWFZ4169zwLmkUPwqbr-u0UXrhtfN6U7Qx_PT-_y1Wixf3uazReUZQKl8owIQFpR2tTOqYV4pqZln2nmQwoNQRhvWtgAtoSRwRZXj0svGC090zSfo_ti7S92-D7nYTcw-rNduG7o-W80F08xIOZAPR9KnLucUWrtLcePSr6XEHkTZ2dJysEdRA353Ku7rYec_fDLD_wATzGJN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734272955</pqid></control><display><type>article</type><title>Lidar equations for turbid media with pulse stretching</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Walker, R E ; McLean, J W</creator><creatorcontrib>Walker, R E ; McLean, J W</creatorcontrib><description>Lidar equations for a system with multiple-scattering beam spreading and pulse stretching are developed from an analytical model for the beam spread function. The resulting lidar equations are transparent to the physics and with some simple approximations for system transfer functions become mathematically simple engineering models for system studies. Application to and comparison with a variety of lidar applications in ocean environments (turbidity and bathymetry) and clouds (aerosol scattering) are presented. These examples provide model validation. The lidar model developed represents a significant extension beyond historical lidar models that exclude pulse stretching. Their mathematical simplicity should foster use in a broader class of problems involving light propagation in turbid media.</description><identifier>ISSN: 1559-128X</identifier><identifier>ISSN: 0003-6935</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.38.002384</identifier><identifier>PMID: 18319804</identifier><language>eng</language><publisher>United States</publisher><ispartof>Applied Optics, 1999-04, Vol.38 (12), p.2384-2397</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-cd6e802e67aba96d2c66572c27ac854c8469792ff88f010e3616a35c5dc4c07b3</citedby><cites>FETCH-LOGICAL-c288t-cd6e802e67aba96d2c66572c27ac854c8469792ff88f010e3616a35c5dc4c07b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18319804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walker, R E</creatorcontrib><creatorcontrib>McLean, J W</creatorcontrib><title>Lidar equations for turbid media with pulse stretching</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>Lidar equations for a system with multiple-scattering beam spreading and pulse stretching are developed from an analytical model for the beam spread function. The resulting lidar equations are transparent to the physics and with some simple approximations for system transfer functions become mathematically simple engineering models for system studies. Application to and comparison with a variety of lidar applications in ocean environments (turbidity and bathymetry) and clouds (aerosol scattering) are presented. These examples provide model validation. The lidar model developed represents a significant extension beyond historical lidar models that exclude pulse stretching. Their mathematical simplicity should foster use in a broader class of problems involving light propagation in turbid media.</description><issn>1559-128X</issn><issn>0003-6935</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEUhYMotlZ3riU7N07NOzfLUnxBoRsFdyGTydhI22mTDOK_d0oLru7h8nHgfAjdUjKlXInH2XLKYUoI4yDO0JhKbiohGTs_ZGkqyuBzhK5y_iaES2H0JRpR4NQAEWOkFrFxCYd970rsthm3XcKlT3Vs8CY00eGfWFZ4169zwLmkUPwqbr-u0UXrhtfN6U7Qx_PT-_y1Wixf3uazReUZQKl8owIQFpR2tTOqYV4pqZln2nmQwoNQRhvWtgAtoSRwRZXj0svGC090zSfo_ti7S92-D7nYTcw-rNduG7o-W80F08xIOZAPR9KnLucUWrtLcePSr6XEHkTZ2dJysEdRA353Ku7rYec_fDLD_wATzGJN</recordid><startdate>19990420</startdate><enddate>19990420</enddate><creator>Walker, R E</creator><creator>McLean, J W</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19990420</creationdate><title>Lidar equations for turbid media with pulse stretching</title><author>Walker, R E ; McLean, J W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-cd6e802e67aba96d2c66572c27ac854c8469792ff88f010e3616a35c5dc4c07b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walker, R E</creatorcontrib><creatorcontrib>McLean, J W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walker, R E</au><au>McLean, J W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lidar equations for turbid media with pulse stretching</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>1999-04-20</date><risdate>1999</risdate><volume>38</volume><issue>12</issue><spage>2384</spage><epage>2397</epage><pages>2384-2397</pages><issn>1559-128X</issn><issn>0003-6935</issn><eissn>1539-4522</eissn><abstract>Lidar equations for a system with multiple-scattering beam spreading and pulse stretching are developed from an analytical model for the beam spread function. The resulting lidar equations are transparent to the physics and with some simple approximations for system transfer functions become mathematically simple engineering models for system studies. Application to and comparison with a variety of lidar applications in ocean environments (turbidity and bathymetry) and clouds (aerosol scattering) are presented. These examples provide model validation. The lidar model developed represents a significant extension beyond historical lidar models that exclude pulse stretching. Their mathematical simplicity should foster use in a broader class of problems involving light propagation in turbid media.</abstract><cop>United States</cop><pmid>18319804</pmid><doi>10.1364/AO.38.002384</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied Optics, 1999-04, Vol.38 (12), p.2384-2397
issn 1559-128X
0003-6935
1539-4522
language eng
recordid cdi_proquest_miscellaneous_734272955
source Alma/SFX Local Collection; Optica Publishing Group Journals
title Lidar equations for turbid media with pulse stretching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lidar%20equations%20for%20turbid%20media%20with%20pulse%20stretching&rft.jtitle=Applied%20Optics&rft.au=Walker,%20R%20E&rft.date=1999-04-20&rft.volume=38&rft.issue=12&rft.spage=2384&rft.epage=2397&rft.pages=2384-2397&rft.issn=1559-128X&rft.eissn=1539-4522&rft_id=info:doi/10.1364/AO.38.002384&rft_dat=%3Cproquest_cross%3E734272955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734272955&rft_id=info:pmid/18319804&rfr_iscdi=true