Combined Effects on Selectivity in Fe-Catalyzed Methylene Oxidation

Methylene C-H bonds are among the most difficult chemical bonds to selectively functionalize because of their abundance in organic structures and inertness to most chemical reagents. Their selective oxidations in biosynthetic pathways underscore the power of such reactions for streamlining the synth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2010-01, Vol.327 (5965), p.566-571
Hauptverfasser: Chen, Mark S, White, M. Christina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 571
container_issue 5965
container_start_page 566
container_title Science (American Association for the Advancement of Science)
container_volume 327
creator Chen, Mark S
White, M. Christina
description Methylene C-H bonds are among the most difficult chemical bonds to selectively functionalize because of their abundance in organic structures and inertness to most chemical reagents. Their selective oxidations in biosynthetic pathways underscore the power of such reactions for streamlining the synthesis of molecules with complex oxygenation patterns. We report that an iron catalyst can achieve methylene C-H bond oxidations in diverse natural-product settings with predictable and high chemo-, site-, and even diastereoselectivities. Electronic, steric, and stereoelectronic factors, which individually promote selectivity with this catalyst, are demonstrated to be powerful control elements when operating in combination in complex molecules. This small-molecule catalyst displays site selectivities complementary to those attained through enzymatic catalysis.
doi_str_mv 10.1126/science.1183602
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_734262013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40510185</jstor_id><sourcerecordid>40510185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-b6f0039ae2d271101f69614d7a2d796f9b76fee70f60581fc9e3f8b6f90bd6673</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EosvCmRMQIQGn0LG9seNjFbWAVNRD6dlynDF4lbVLnEUsv56pNhSJAyfbet-M571h7DmH95wLdVp8xOSRHq1UIB6wFQfT1EaAfMhWAFLVLejmhD0pZQtAmpGP2YkAzqEBsWJdl3d9TDhU5yGgn0uVU3WNI13jjzgfqpiqC6w7N7vx8Iuwzzh_O4yYsLr6GQc3x5yeskfBjQWfLeea3Vycf-k-1pdXHz51Z5e1b4Sa614FGsg4FIPQ9D8Pyii-GbQTgzYqmF6rgKghKGhaHrxBGVqqMtAPSmm5Zu-OfW-n_H2PZba7WDyOo0uY98VquRGKrEki3_6XlIrSIv8Evv4H3Ob9lMiFFZwYKTZA0OkR8lMuZcJgb6e4c9PBcrB3a7DLGuyyBqp4ubTd9zsc7vk_uRPwZgFc8W4Mk0s-lr-ckEpomnLNXhy5bZnzdK9voKH82ob0V0c9uGzd14l63FzfRQBcGy1UK38DeKShzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213603240</pqid></control><display><type>article</type><title>Combined Effects on Selectivity in Fe-Catalyzed Methylene Oxidation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Chen, Mark S ; White, M. Christina</creator><creatorcontrib>Chen, Mark S ; White, M. Christina</creatorcontrib><description>Methylene C-H bonds are among the most difficult chemical bonds to selectively functionalize because of their abundance in organic structures and inertness to most chemical reagents. Their selective oxidations in biosynthetic pathways underscore the power of such reactions for streamlining the synthesis of molecules with complex oxygenation patterns. We report that an iron catalyst can achieve methylene C-H bond oxidations in diverse natural-product settings with predictable and high chemo-, site-, and even diastereoselectivities. Electronic, steric, and stereoelectronic factors, which individually promote selectivity with this catalyst, are demonstrated to be powerful control elements when operating in combination in complex molecules. This small-molecule catalyst displays site selectivities complementary to those attained through enzymatic catalysis.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1183602</identifier><identifier>PMID: 20110502</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Alcohols ; Biological and medical sciences ; Carbon - chemistry ; Catalysis ; Catalysts ; Catalytic oxidation ; Chemical bonding ; Chemical bonds ; Chemical compounds ; Chemical Phenomena ; Chemistry ; Coordination Complexes - chemistry ; Electrons ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General and physical chemistry ; Hydrocarbons - chemistry ; Hydrogen - chemistry ; Hydrogen Peroxide ; Iron - chemistry ; Ketones ; Materials ; Mathematical rings ; Mechanisms. Catalysis. Electron transfer. Models ; Models, Chemical ; Molecular biophysics ; Molecular Structure ; Molecules ; Oxidation ; Oxidation-Reduction ; Physical chemistry in biology ; Reactivity ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Science (American Association for the Advancement of Science), 2010-01, Vol.327 (5965), p.566-571</ispartof><rights>Copyright 2010 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-b6f0039ae2d271101f69614d7a2d796f9b76fee70f60581fc9e3f8b6f90bd6673</citedby><cites>FETCH-LOGICAL-c526t-b6f0039ae2d271101f69614d7a2d796f9b76fee70f60581fc9e3f8b6f90bd6673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40510185$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40510185$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2882,2883,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22362736$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20110502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Mark S</creatorcontrib><creatorcontrib>White, M. Christina</creatorcontrib><title>Combined Effects on Selectivity in Fe-Catalyzed Methylene Oxidation</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Methylene C-H bonds are among the most difficult chemical bonds to selectively functionalize because of their abundance in organic structures and inertness to most chemical reagents. Their selective oxidations in biosynthetic pathways underscore the power of such reactions for streamlining the synthesis of molecules with complex oxygenation patterns. We report that an iron catalyst can achieve methylene C-H bond oxidations in diverse natural-product settings with predictable and high chemo-, site-, and even diastereoselectivities. Electronic, steric, and stereoelectronic factors, which individually promote selectivity with this catalyst, are demonstrated to be powerful control elements when operating in combination in complex molecules. This small-molecule catalyst displays site selectivities complementary to those attained through enzymatic catalysis.</description><subject>Alcohols</subject><subject>Biological and medical sciences</subject><subject>Carbon - chemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic oxidation</subject><subject>Chemical bonding</subject><subject>Chemical bonds</subject><subject>Chemical compounds</subject><subject>Chemical Phenomena</subject><subject>Chemistry</subject><subject>Coordination Complexes - chemistry</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General and physical chemistry</subject><subject>Hydrocarbons - chemistry</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen Peroxide</subject><subject>Iron - chemistry</subject><subject>Ketones</subject><subject>Materials</subject><subject>Mathematical rings</subject><subject>Mechanisms. Catalysis. Electron transfer. Models</subject><subject>Models, Chemical</subject><subject>Molecular biophysics</subject><subject>Molecular Structure</subject><subject>Molecules</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Physical chemistry in biology</subject><subject>Reactivity</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS0EosvCmRMQIQGn0LG9seNjFbWAVNRD6dlynDF4lbVLnEUsv56pNhSJAyfbet-M571h7DmH95wLdVp8xOSRHq1UIB6wFQfT1EaAfMhWAFLVLejmhD0pZQtAmpGP2YkAzqEBsWJdl3d9TDhU5yGgn0uVU3WNI13jjzgfqpiqC6w7N7vx8Iuwzzh_O4yYsLr6GQc3x5yeskfBjQWfLeea3Vycf-k-1pdXHz51Z5e1b4Sa614FGsg4FIPQ9D8Pyii-GbQTgzYqmF6rgKghKGhaHrxBGVqqMtAPSmm5Zu-OfW-n_H2PZba7WDyOo0uY98VquRGKrEki3_6XlIrSIv8Evv4H3Ob9lMiFFZwYKTZA0OkR8lMuZcJgb6e4c9PBcrB3a7DLGuyyBqp4ubTd9zsc7vk_uRPwZgFc8W4Mk0s-lr-ckEpomnLNXhy5bZnzdK9voKH82ob0V0c9uGzd14l63FzfRQBcGy1UK38DeKShzg</recordid><startdate>20100129</startdate><enddate>20100129</enddate><creator>Chen, Mark S</creator><creator>White, M. Christina</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20100129</creationdate><title>Combined Effects on Selectivity in Fe-Catalyzed Methylene Oxidation</title><author>Chen, Mark S ; White, M. Christina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-b6f0039ae2d271101f69614d7a2d796f9b76fee70f60581fc9e3f8b6f90bd6673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alcohols</topic><topic>Biological and medical sciences</topic><topic>Carbon - chemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic oxidation</topic><topic>Chemical bonding</topic><topic>Chemical bonds</topic><topic>Chemical compounds</topic><topic>Chemical Phenomena</topic><topic>Chemistry</topic><topic>Coordination Complexes - chemistry</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General and physical chemistry</topic><topic>Hydrocarbons - chemistry</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen Peroxide</topic><topic>Iron - chemistry</topic><topic>Ketones</topic><topic>Materials</topic><topic>Mathematical rings</topic><topic>Mechanisms. Catalysis. Electron transfer. Models</topic><topic>Models, Chemical</topic><topic>Molecular biophysics</topic><topic>Molecular Structure</topic><topic>Molecules</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Physical chemistry in biology</topic><topic>Reactivity</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Mark S</creatorcontrib><creatorcontrib>White, M. Christina</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Mark S</au><au>White, M. Christina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined Effects on Selectivity in Fe-Catalyzed Methylene Oxidation</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2010-01-29</date><risdate>2010</risdate><volume>327</volume><issue>5965</issue><spage>566</spage><epage>571</epage><pages>566-571</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Methylene C-H bonds are among the most difficult chemical bonds to selectively functionalize because of their abundance in organic structures and inertness to most chemical reagents. Their selective oxidations in biosynthetic pathways underscore the power of such reactions for streamlining the synthesis of molecules with complex oxygenation patterns. We report that an iron catalyst can achieve methylene C-H bond oxidations in diverse natural-product settings with predictable and high chemo-, site-, and even diastereoselectivities. Electronic, steric, and stereoelectronic factors, which individually promote selectivity with this catalyst, are demonstrated to be powerful control elements when operating in combination in complex molecules. This small-molecule catalyst displays site selectivities complementary to those attained through enzymatic catalysis.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>20110502</pmid><doi>10.1126/science.1183602</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2010-01, Vol.327 (5965), p.566-571
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_734262013
source MEDLINE; JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science
subjects Alcohols
Biological and medical sciences
Carbon - chemistry
Catalysis
Catalysts
Catalytic oxidation
Chemical bonding
Chemical bonds
Chemical compounds
Chemical Phenomena
Chemistry
Coordination Complexes - chemistry
Electrons
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General and physical chemistry
Hydrocarbons - chemistry
Hydrogen - chemistry
Hydrogen Peroxide
Iron - chemistry
Ketones
Materials
Mathematical rings
Mechanisms. Catalysis. Electron transfer. Models
Models, Chemical
Molecular biophysics
Molecular Structure
Molecules
Oxidation
Oxidation-Reduction
Physical chemistry in biology
Reactivity
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Combined Effects on Selectivity in Fe-Catalyzed Methylene Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20Effects%20on%20Selectivity%20in%20Fe-Catalyzed%20Methylene%20Oxidation&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Chen,%20Mark%20S&rft.date=2010-01-29&rft.volume=327&rft.issue=5965&rft.spage=566&rft.epage=571&rft.pages=566-571&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1183602&rft_dat=%3Cjstor_proqu%3E40510185%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213603240&rft_id=info:pmid/20110502&rft_jstor_id=40510185&rfr_iscdi=true