Characterization of the zebrafish T cell receptor β locus
Zebrafish (Danio rerio) has become an increasingly important model for immunological study. Its immune system is remarkably similar to that of mammals and includes both the adaptive and innate branches. Zebrafish T cells express functional T cell receptors (TCR), and all four TCR loci are present wi...
Gespeichert in:
Veröffentlicht in: | Immunogenetics (New York) 2010, Vol.62 (1), p.23-29 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Immunogenetics (New York) |
container_volume | 62 |
creator | Meeker, Nathan D Smith, Alexandra C. H Frazer, J. Kimble Bradley, Diana F Rudner, Lynnie A Love, Cynthia Trede, Nikolaus S |
description | Zebrafish (Danio rerio) has become an increasingly important model for immunological study. Its immune system is remarkably similar to that of mammals and includes both the adaptive and innate branches. Zebrafish T cells express functional T cell receptors (TCR), and all four TCR loci are present within the genome. Using 5′-rapid amplification of cDNA ends, we cloned and sequenced zebrafish TCRβ transcripts. TCRβ VDJ coding joints demonstrate conservation of mechanisms used by other vertebrate species to increase junctional diversity. Using the sequences obtained, along with previously published data, we comprehensively annotated the zebrafish TCRβ locus. Overall, organization of the locus resembles that seen in mammals. There are 51 V segments, a single D segment, 27 Jβ1 segments, a single Jβ2 segment, and two constant regions. This description of the zebrafish TCRβ locus has the potential to enhance immunological research in zebrafish and further our understanding of mammalian TCR repertoire generation. |
doi_str_mv | 10.1007/s00251-009-0407-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734257268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734257268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-5205db264745095c4d2bd1661e56559a140d0488265e20c4764cc6ae73173a83</originalsourceid><addsrcrecordid>eNp9kLtOw0AQRVcIBCHwATTgjsows8-YDkW8pEgUhHq1Xq8TR0427NoF-Sw-hG_ClgMl1RRz7tXMIeQC4QYB1G0EoAJTgCwFDiqVB2SEnNEUKeIhGXULliqFeEJOY1wBoMioPCYnFEBwwdiI3E2XJhjbuFDtTFP5TeLLpFm6ZOfyYMoqLpN5Yl1dJ8FZt218SL6_ktrbNp6Ro9LU0Z3v55jMHx_m0-d09vr0Mr2fpZajaFJBQRQ5lVxxAZmwvKB5gVKiE1KIzCCHAvhkQqVwFCxXklsrjVMMFTMTNibXQ-02-I_WxUavq9hfZDbOt1ErxqlQVPYkDqQNPsbgSr0N1dqET42ge2F6EKY7L7oXpmWXudy3t_naFX-JX0MdQAcgdqvNwgW98m3YdA__23o1hErjtVmEKur3NwrIAFXGOZuwH3fdfQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734257268</pqid></control><display><type>article</type><title>Characterization of the zebrafish T cell receptor β locus</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Meeker, Nathan D ; Smith, Alexandra C. H ; Frazer, J. Kimble ; Bradley, Diana F ; Rudner, Lynnie A ; Love, Cynthia ; Trede, Nikolaus S</creator><creatorcontrib>Meeker, Nathan D ; Smith, Alexandra C. H ; Frazer, J. Kimble ; Bradley, Diana F ; Rudner, Lynnie A ; Love, Cynthia ; Trede, Nikolaus S</creatorcontrib><description>Zebrafish (Danio rerio) has become an increasingly important model for immunological study. Its immune system is remarkably similar to that of mammals and includes both the adaptive and innate branches. Zebrafish T cells express functional T cell receptors (TCR), and all four TCR loci are present within the genome. Using 5′-rapid amplification of cDNA ends, we cloned and sequenced zebrafish TCRβ transcripts. TCRβ VDJ coding joints demonstrate conservation of mechanisms used by other vertebrate species to increase junctional diversity. Using the sequences obtained, along with previously published data, we comprehensively annotated the zebrafish TCRβ locus. Overall, organization of the locus resembles that seen in mammals. There are 51 V segments, a single D segment, 27 Jβ1 segments, a single Jβ2 segment, and two constant regions. This description of the zebrafish TCRβ locus has the potential to enhance immunological research in zebrafish and further our understanding of mammalian TCR repertoire generation.</description><identifier>ISSN: 0093-7711</identifier><identifier>EISSN: 1432-1211</identifier><identifier>DOI: 10.1007/s00251-009-0407-6</identifier><identifier>PMID: 20054533</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Allergology ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Complementarity Determining Regions - genetics ; Complementarity Determining Regions - immunology ; Gene Function ; Human Genetics ; Immunoglobulin Variable Region - genetics ; Immunology ; Nucleic Acid Amplification Techniques ; Original Paper ; Promoter Regions, Genetic ; Receptors, Antigen, T-Cell, alpha-beta - genetics ; Receptors, Antigen, T-Cell, alpha-beta - immunology ; VDJ Exons ; Zebrafish - genetics ; Zebrafish - immunology ; Zebrafish Proteins - genetics ; Zebrafish Proteins - immunology</subject><ispartof>Immunogenetics (New York), 2010, Vol.62 (1), p.23-29</ispartof><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-5205db264745095c4d2bd1661e56559a140d0488265e20c4764cc6ae73173a83</citedby><cites>FETCH-LOGICAL-c415t-5205db264745095c4d2bd1661e56559a140d0488265e20c4764cc6ae73173a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00251-009-0407-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00251-009-0407-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20054533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meeker, Nathan D</creatorcontrib><creatorcontrib>Smith, Alexandra C. H</creatorcontrib><creatorcontrib>Frazer, J. Kimble</creatorcontrib><creatorcontrib>Bradley, Diana F</creatorcontrib><creatorcontrib>Rudner, Lynnie A</creatorcontrib><creatorcontrib>Love, Cynthia</creatorcontrib><creatorcontrib>Trede, Nikolaus S</creatorcontrib><title>Characterization of the zebrafish T cell receptor β locus</title><title>Immunogenetics (New York)</title><addtitle>Immunogenetics</addtitle><addtitle>Immunogenetics</addtitle><description>Zebrafish (Danio rerio) has become an increasingly important model for immunological study. Its immune system is remarkably similar to that of mammals and includes both the adaptive and innate branches. Zebrafish T cells express functional T cell receptors (TCR), and all four TCR loci are present within the genome. Using 5′-rapid amplification of cDNA ends, we cloned and sequenced zebrafish TCRβ transcripts. TCRβ VDJ coding joints demonstrate conservation of mechanisms used by other vertebrate species to increase junctional diversity. Using the sequences obtained, along with previously published data, we comprehensively annotated the zebrafish TCRβ locus. Overall, organization of the locus resembles that seen in mammals. There are 51 V segments, a single D segment, 27 Jβ1 segments, a single Jβ2 segment, and two constant regions. This description of the zebrafish TCRβ locus has the potential to enhance immunological research in zebrafish and further our understanding of mammalian TCR repertoire generation.</description><subject>Allergology</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Complementarity Determining Regions - genetics</subject><subject>Complementarity Determining Regions - immunology</subject><subject>Gene Function</subject><subject>Human Genetics</subject><subject>Immunoglobulin Variable Region - genetics</subject><subject>Immunology</subject><subject>Nucleic Acid Amplification Techniques</subject><subject>Original Paper</subject><subject>Promoter Regions, Genetic</subject><subject>Receptors, Antigen, T-Cell, alpha-beta - genetics</subject><subject>Receptors, Antigen, T-Cell, alpha-beta - immunology</subject><subject>VDJ Exons</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - immunology</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - immunology</subject><issn>0093-7711</issn><issn>1432-1211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOw0AQRVcIBCHwATTgjsows8-YDkW8pEgUhHq1Xq8TR0427NoF-Sw-hG_ClgMl1RRz7tXMIeQC4QYB1G0EoAJTgCwFDiqVB2SEnNEUKeIhGXULliqFeEJOY1wBoMioPCYnFEBwwdiI3E2XJhjbuFDtTFP5TeLLpFm6ZOfyYMoqLpN5Yl1dJ8FZt218SL6_ktrbNp6Ro9LU0Z3v55jMHx_m0-d09vr0Mr2fpZajaFJBQRQ5lVxxAZmwvKB5gVKiE1KIzCCHAvhkQqVwFCxXklsrjVMMFTMTNibXQ-02-I_WxUavq9hfZDbOt1ErxqlQVPYkDqQNPsbgSr0N1dqET42ge2F6EKY7L7oXpmWXudy3t_naFX-JX0MdQAcgdqvNwgW98m3YdA__23o1hErjtVmEKur3NwrIAFXGOZuwH3fdfQw</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Meeker, Nathan D</creator><creator>Smith, Alexandra C. H</creator><creator>Frazer, J. Kimble</creator><creator>Bradley, Diana F</creator><creator>Rudner, Lynnie A</creator><creator>Love, Cynthia</creator><creator>Trede, Nikolaus S</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2010</creationdate><title>Characterization of the zebrafish T cell receptor β locus</title><author>Meeker, Nathan D ; Smith, Alexandra C. H ; Frazer, J. Kimble ; Bradley, Diana F ; Rudner, Lynnie A ; Love, Cynthia ; Trede, Nikolaus S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-5205db264745095c4d2bd1661e56559a140d0488265e20c4764cc6ae73173a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Allergology</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Complementarity Determining Regions - genetics</topic><topic>Complementarity Determining Regions - immunology</topic><topic>Gene Function</topic><topic>Human Genetics</topic><topic>Immunoglobulin Variable Region - genetics</topic><topic>Immunology</topic><topic>Nucleic Acid Amplification Techniques</topic><topic>Original Paper</topic><topic>Promoter Regions, Genetic</topic><topic>Receptors, Antigen, T-Cell, alpha-beta - genetics</topic><topic>Receptors, Antigen, T-Cell, alpha-beta - immunology</topic><topic>VDJ Exons</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - immunology</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meeker, Nathan D</creatorcontrib><creatorcontrib>Smith, Alexandra C. H</creatorcontrib><creatorcontrib>Frazer, J. Kimble</creatorcontrib><creatorcontrib>Bradley, Diana F</creatorcontrib><creatorcontrib>Rudner, Lynnie A</creatorcontrib><creatorcontrib>Love, Cynthia</creatorcontrib><creatorcontrib>Trede, Nikolaus S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Immunogenetics (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meeker, Nathan D</au><au>Smith, Alexandra C. H</au><au>Frazer, J. Kimble</au><au>Bradley, Diana F</au><au>Rudner, Lynnie A</au><au>Love, Cynthia</au><au>Trede, Nikolaus S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the zebrafish T cell receptor β locus</atitle><jtitle>Immunogenetics (New York)</jtitle><stitle>Immunogenetics</stitle><addtitle>Immunogenetics</addtitle><date>2010</date><risdate>2010</risdate><volume>62</volume><issue>1</issue><spage>23</spage><epage>29</epage><pages>23-29</pages><issn>0093-7711</issn><eissn>1432-1211</eissn><abstract>Zebrafish (Danio rerio) has become an increasingly important model for immunological study. Its immune system is remarkably similar to that of mammals and includes both the adaptive and innate branches. Zebrafish T cells express functional T cell receptors (TCR), and all four TCR loci are present within the genome. Using 5′-rapid amplification of cDNA ends, we cloned and sequenced zebrafish TCRβ transcripts. TCRβ VDJ coding joints demonstrate conservation of mechanisms used by other vertebrate species to increase junctional diversity. Using the sequences obtained, along with previously published data, we comprehensively annotated the zebrafish TCRβ locus. Overall, organization of the locus resembles that seen in mammals. There are 51 V segments, a single D segment, 27 Jβ1 segments, a single Jβ2 segment, and two constant regions. This description of the zebrafish TCRβ locus has the potential to enhance immunological research in zebrafish and further our understanding of mammalian TCR repertoire generation.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20054533</pmid><doi>10.1007/s00251-009-0407-6</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-7711 |
ispartof | Immunogenetics (New York), 2010, Vol.62 (1), p.23-29 |
issn | 0093-7711 1432-1211 |
language | eng |
recordid | cdi_proquest_miscellaneous_734257268 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Allergology Animals Biomedical and Life Sciences Biomedicine Cell Biology Complementarity Determining Regions - genetics Complementarity Determining Regions - immunology Gene Function Human Genetics Immunoglobulin Variable Region - genetics Immunology Nucleic Acid Amplification Techniques Original Paper Promoter Regions, Genetic Receptors, Antigen, T-Cell, alpha-beta - genetics Receptors, Antigen, T-Cell, alpha-beta - immunology VDJ Exons Zebrafish - genetics Zebrafish - immunology Zebrafish Proteins - genetics Zebrafish Proteins - immunology |
title | Characterization of the zebrafish T cell receptor β locus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20zebrafish%20T%20cell%20receptor%20%CE%B2%20locus&rft.jtitle=Immunogenetics%20(New%20York)&rft.au=Meeker,%20Nathan%20D&rft.date=2010&rft.volume=62&rft.issue=1&rft.spage=23&rft.epage=29&rft.pages=23-29&rft.issn=0093-7711&rft.eissn=1432-1211&rft_id=info:doi/10.1007/s00251-009-0407-6&rft_dat=%3Cproquest_cross%3E734257268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734257268&rft_id=info:pmid/20054533&rfr_iscdi=true |