Dynamic neural control for a plasma etch process

This paper presents results and commentary on using a cascade neural network and a policy-iteration optimization routine to provide suggested process setpoints for recovery from long-term machine drift in a LAM 4520 6-in dielectric etcher. Traditional plasma etch variables such as pressures, gas flo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks 1997, Vol.8 (4), p.883-901
Hauptverfasser: Card, J.P., Sniderman, D.L., Klimasauskas, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 901
container_issue 4
container_start_page 883
container_title IEEE transactions on neural networks
container_volume 8
creator Card, J.P.
Sniderman, D.L.
Klimasauskas, C.
description This paper presents results and commentary on using a cascade neural network and a policy-iteration optimization routine to provide suggested process setpoints for recovery from long-term machine drift in a LAM 4520 6-in dielectric etcher. Traditional plasma etch variables such as pressures, gas flows, temperatures, RF power, etc, are combined with a generalized representation of the time dependent effects of maintenance events to predict film etch rates, uniformity, and selectivity, A cascade neural-network model is developed using 15 months of data divided into train, test, and validation sets. The neural model both fits the validation data well and captures the nonuniformity in the in-control region of the machine. Two control algorithms use this model in a predictive configuration to identify input state changes, including maintenance events, to bring an out-of-control situation back into control. The overall goal of the optimization is to reduce equipment downtime and decrease cost of ownership of the tool by speeding up response time and extending the lifetime of consumable parts. The optimization routines were tested on 11 out-of-control situations and successfully suggested reasonable low-cost solutions to each for bringing the system back into control.
doi_str_mv 10.1109/72.595886
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_734252009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>595886</ieee_id><sourcerecordid>28278860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-be5bf96ec5cecccfb39ba7dae355adaf1dc25d48d15dcc62b0c73bade64369193</originalsourceid><addsrcrecordid>eNqFkLtPxDAMhyME4o7CwMqAOoEYeuTRJM2Ijqd0EgvMVeq4oqiPI2mH--_pqRVsMNmSP_8sf4ScM7pijJpbzVfSyCxTB2TJTMoSSo04HHuaysRwrhfkJIRPSlkqqTomC5ZxKZXhS0Lvd61tKohbHLytY-ja3nd1XHY-tvG2tqGxMfbwEW99BxjCKTkqbR3wbK4ReX98eFs_J5vXp5f13SYBoUSfFCiL0igECQgAZSFMYbWzKKS0zpbMAZcuzRyTDkDxgoIWhXWoUqEMMyIi11PuePdrwNDnTRUA69q22A0h1yLlku8fjcjVnyTPuB7d0P9BJfWoTI_gzQSC70LwWOZbXzXW73JG873xXPN8Mj6yl3PoUDTofslZ8QhcTECFiD_jefsbJsiDOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26571047</pqid></control><display><type>article</type><title>Dynamic neural control for a plasma etch process</title><source>IEEE Electronic Library (IEL)</source><creator>Card, J.P. ; Sniderman, D.L. ; Klimasauskas, C.</creator><creatorcontrib>Card, J.P. ; Sniderman, D.L. ; Klimasauskas, C.</creatorcontrib><description>This paper presents results and commentary on using a cascade neural network and a policy-iteration optimization routine to provide suggested process setpoints for recovery from long-term machine drift in a LAM 4520 6-in dielectric etcher. Traditional plasma etch variables such as pressures, gas flows, temperatures, RF power, etc, are combined with a generalized representation of the time dependent effects of maintenance events to predict film etch rates, uniformity, and selectivity, A cascade neural-network model is developed using 15 months of data divided into train, test, and validation sets. The neural model both fits the validation data well and captures the nonuniformity in the in-control region of the machine. Two control algorithms use this model in a predictive configuration to identify input state changes, including maintenance events, to bring an out-of-control situation back into control. The overall goal of the optimization is to reduce equipment downtime and decrease cost of ownership of the tool by speeding up response time and extending the lifetime of consumable parts. The optimization routines were tested on 11 out-of-control situations and successfully suggested reasonable low-cost solutions to each for bringing the system back into control.</description><identifier>ISSN: 1045-9227</identifier><identifier>EISSN: 1941-0093</identifier><identifier>DOI: 10.1109/72.595886</identifier><identifier>PMID: 18255692</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Dielectric devices ; Etching ; Fluid flow ; Neural networks ; Plasma applications ; Plasma temperature ; Predictive models ; Radio frequency ; Temperature dependence ; Testing</subject><ispartof>IEEE transactions on neural networks, 1997, Vol.8 (4), p.883-901</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-be5bf96ec5cecccfb39ba7dae355adaf1dc25d48d15dcc62b0c73bade64369193</citedby><cites>FETCH-LOGICAL-c363t-be5bf96ec5cecccfb39ba7dae355adaf1dc25d48d15dcc62b0c73bade64369193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/595886$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/595886$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18255692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Card, J.P.</creatorcontrib><creatorcontrib>Sniderman, D.L.</creatorcontrib><creatorcontrib>Klimasauskas, C.</creatorcontrib><title>Dynamic neural control for a plasma etch process</title><title>IEEE transactions on neural networks</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>This paper presents results and commentary on using a cascade neural network and a policy-iteration optimization routine to provide suggested process setpoints for recovery from long-term machine drift in a LAM 4520 6-in dielectric etcher. Traditional plasma etch variables such as pressures, gas flows, temperatures, RF power, etc, are combined with a generalized representation of the time dependent effects of maintenance events to predict film etch rates, uniformity, and selectivity, A cascade neural-network model is developed using 15 months of data divided into train, test, and validation sets. The neural model both fits the validation data well and captures the nonuniformity in the in-control region of the machine. Two control algorithms use this model in a predictive configuration to identify input state changes, including maintenance events, to bring an out-of-control situation back into control. The overall goal of the optimization is to reduce equipment downtime and decrease cost of ownership of the tool by speeding up response time and extending the lifetime of consumable parts. The optimization routines were tested on 11 out-of-control situations and successfully suggested reasonable low-cost solutions to each for bringing the system back into control.</description><subject>Dielectric devices</subject><subject>Etching</subject><subject>Fluid flow</subject><subject>Neural networks</subject><subject>Plasma applications</subject><subject>Plasma temperature</subject><subject>Predictive models</subject><subject>Radio frequency</subject><subject>Temperature dependence</subject><subject>Testing</subject><issn>1045-9227</issn><issn>1941-0093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkLtPxDAMhyME4o7CwMqAOoEYeuTRJM2Ijqd0EgvMVeq4oqiPI2mH--_pqRVsMNmSP_8sf4ScM7pijJpbzVfSyCxTB2TJTMoSSo04HHuaysRwrhfkJIRPSlkqqTomC5ZxKZXhS0Lvd61tKohbHLytY-ja3nd1XHY-tvG2tqGxMfbwEW99BxjCKTkqbR3wbK4ReX98eFs_J5vXp5f13SYBoUSfFCiL0igECQgAZSFMYbWzKKS0zpbMAZcuzRyTDkDxgoIWhXWoUqEMMyIi11PuePdrwNDnTRUA69q22A0h1yLlku8fjcjVnyTPuB7d0P9BJfWoTI_gzQSC70LwWOZbXzXW73JG873xXPN8Mj6yl3PoUDTofslZ8QhcTECFiD_jefsbJsiDOw</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Card, J.P.</creator><creator>Sniderman, D.L.</creator><creator>Klimasauskas, C.</creator><general>IEEE</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>1997</creationdate><title>Dynamic neural control for a plasma etch process</title><author>Card, J.P. ; Sniderman, D.L. ; Klimasauskas, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-be5bf96ec5cecccfb39ba7dae355adaf1dc25d48d15dcc62b0c73bade64369193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Dielectric devices</topic><topic>Etching</topic><topic>Fluid flow</topic><topic>Neural networks</topic><topic>Plasma applications</topic><topic>Plasma temperature</topic><topic>Predictive models</topic><topic>Radio frequency</topic><topic>Temperature dependence</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Card, J.P.</creatorcontrib><creatorcontrib>Sniderman, D.L.</creatorcontrib><creatorcontrib>Klimasauskas, C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Card, J.P.</au><au>Sniderman, D.L.</au><au>Klimasauskas, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic neural control for a plasma etch process</atitle><jtitle>IEEE transactions on neural networks</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>1997</date><risdate>1997</risdate><volume>8</volume><issue>4</issue><spage>883</spage><epage>901</epage><pages>883-901</pages><issn>1045-9227</issn><eissn>1941-0093</eissn><coden>ITNNEP</coden><abstract>This paper presents results and commentary on using a cascade neural network and a policy-iteration optimization routine to provide suggested process setpoints for recovery from long-term machine drift in a LAM 4520 6-in dielectric etcher. Traditional plasma etch variables such as pressures, gas flows, temperatures, RF power, etc, are combined with a generalized representation of the time dependent effects of maintenance events to predict film etch rates, uniformity, and selectivity, A cascade neural-network model is developed using 15 months of data divided into train, test, and validation sets. The neural model both fits the validation data well and captures the nonuniformity in the in-control region of the machine. Two control algorithms use this model in a predictive configuration to identify input state changes, including maintenance events, to bring an out-of-control situation back into control. The overall goal of the optimization is to reduce equipment downtime and decrease cost of ownership of the tool by speeding up response time and extending the lifetime of consumable parts. The optimization routines were tested on 11 out-of-control situations and successfully suggested reasonable low-cost solutions to each for bringing the system back into control.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18255692</pmid><doi>10.1109/72.595886</doi><tpages>19</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transactions on neural networks, 1997, Vol.8 (4), p.883-901
issn 1045-9227
1941-0093
language eng
recordid cdi_proquest_miscellaneous_734252009
source IEEE Electronic Library (IEL)
subjects Dielectric devices
Etching
Fluid flow
Neural networks
Plasma applications
Plasma temperature
Predictive models
Radio frequency
Temperature dependence
Testing
title Dynamic neural control for a plasma etch process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20neural%20control%20for%20a%20plasma%20etch%20process&rft.jtitle=IEEE%20transactions%20on%20neural%20networks&rft.au=Card,%20J.P.&rft.date=1997&rft.volume=8&rft.issue=4&rft.spage=883&rft.epage=901&rft.pages=883-901&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.595886&rft_dat=%3Cproquest_RIE%3E28278860%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26571047&rft_id=info:pmid/18255692&rft_ieee_id=595886&rfr_iscdi=true