Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms
In this paper, we propose a novel fuzzy logic controller, called linguistic hedge fuzzy logic controller, to simplify the membership function constructions and the rule developments. The design methodology of linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of the ling...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2001-02, Vol.31 (1), p.32-53 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | 1 |
container_start_page | 32 |
container_title | IEEE transactions on cybernetics |
container_volume | 31 |
creator | Liu, B D Chen, C Y Tsao, J Y |
description | In this paper, we propose a novel fuzzy logic controller, called linguistic hedge fuzzy logic controller, to simplify the membership function constructions and the rule developments. The design methodology of linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of the linguistic hedges and the genetic algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically, and ran speed up the control result to fit the system demand. The genetic algorithms are adopted to search the optimal linguistic hedge combination in the linguistic hedge module, According to the proposed methodology, the linguistic hedge fuzzy logic controller has the following advantages: 1) it needs only the simple-shape membership functions rather than the carefully designed ones for characterizing the related variables; 2) it is sufficient to adopt a fewer number of rules for inference; 3) the rules are developed intuitionally without heavily depending on the endeavor of experts; 4) the linguistic hedge module associated with the genetic algorithm enables it to be adaptive; 5) it performs better than the conventional fuzzy logic controllers do; and 6) it can be realized with low design complexity and small hardware overhead. Furthermore, the proposed approach has been applied to design three well-known nonlinear systems. The simulation and experimental results demonstrate the effectiveness of this design,. |
doi_str_mv | 10.1109/3477.907563 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_734249911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>907563</ieee_id><sourcerecordid>25969055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-5fc0f4431839c734576ea3491673bd4c28406434f663c3311238d185d06f70363</originalsourceid><addsrcrecordid>eNqN0s9rFTEQB_BQlLZWT948SPDQHmRrfkx-HUurVSh40fOSl53dpuzbPJNdof3rzeM9LPRgPSVkPpmB4UvIW87OOWfukwRjzh0zSssDcswd8IaBEy_qnVnZAHB3RF6VcscYc8yZQ3LErQAwWh-TcIUlDhNNPfWd38zxN9J-eXi4p2MaYqAhTXNO44iZrnzBjqaJjnEalljmGJpb7AbcooCbuVA_dXTACWuJ-nFIOc636_KavOz9WPDN_jwhP798_nH5tbn5fv3t8uKmCaDM3Kg-sB5AcitdMLK-afQSHNdGrjoIwgLTIKHXWgYpORfSdtyqjuneMKnlCTnb9d3k9GvBMrfrWAKOo58wLaV1HLSu3eyzsk4X4BznVZ7-UwrruBJG_AcUWjlhn4fKaceUqvDDE3iXljzVDbbWgnF1NaaijzsUciolY99uclz7fN9y1m7j0W7j0e7iUfX7fctltcbu0e7zUMG7HYiI-Le8__0HlEK6aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884793497</pqid></control><display><type>article</type><title>Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, B D ; Chen, C Y ; Tsao, J Y</creator><creatorcontrib>Liu, B D ; Chen, C Y ; Tsao, J Y</creatorcontrib><description>In this paper, we propose a novel fuzzy logic controller, called linguistic hedge fuzzy logic controller, to simplify the membership function constructions and the rule developments. The design methodology of linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of the linguistic hedges and the genetic algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically, and ran speed up the control result to fit the system demand. The genetic algorithms are adopted to search the optimal linguistic hedge combination in the linguistic hedge module, According to the proposed methodology, the linguistic hedge fuzzy logic controller has the following advantages: 1) it needs only the simple-shape membership functions rather than the carefully designed ones for characterizing the related variables; 2) it is sufficient to adopt a fewer number of rules for inference; 3) the rules are developed intuitionally without heavily depending on the endeavor of experts; 4) the linguistic hedge module associated with the genetic algorithm enables it to be adaptive; 5) it performs better than the conventional fuzzy logic controllers do; and 6) it can be realized with low design complexity and small hardware overhead. Furthermore, the proposed approach has been applied to design three well-known nonlinear systems. The simulation and experimental results demonstrate the effectiveness of this design,.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/3477.907563</identifier><identifier>PMID: 18244766</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive control ; Algorithm design and analysis ; Control systems ; Design engineering ; Design methodology ; Dynamical systems ; Fuzzy control ; Fuzzy logic ; Genetic algorithms ; Linguistics ; Mathematical models ; Modules ; Optimal control ; Programmable control ; Radio access networks ; Shape control ; Studies</subject><ispartof>IEEE transactions on cybernetics, 2001-02, Vol.31 (1), p.32-53</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-5fc0f4431839c734576ea3491673bd4c28406434f663c3311238d185d06f70363</citedby><cites>FETCH-LOGICAL-c457t-5fc0f4431839c734576ea3491673bd4c28406434f663c3311238d185d06f70363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/907563$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/907563$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18244766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, B D</creatorcontrib><creatorcontrib>Chen, C Y</creatorcontrib><creatorcontrib>Tsao, J Y</creatorcontrib><title>Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>In this paper, we propose a novel fuzzy logic controller, called linguistic hedge fuzzy logic controller, to simplify the membership function constructions and the rule developments. The design methodology of linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of the linguistic hedges and the genetic algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically, and ran speed up the control result to fit the system demand. The genetic algorithms are adopted to search the optimal linguistic hedge combination in the linguistic hedge module, According to the proposed methodology, the linguistic hedge fuzzy logic controller has the following advantages: 1) it needs only the simple-shape membership functions rather than the carefully designed ones for characterizing the related variables; 2) it is sufficient to adopt a fewer number of rules for inference; 3) the rules are developed intuitionally without heavily depending on the endeavor of experts; 4) the linguistic hedge module associated with the genetic algorithm enables it to be adaptive; 5) it performs better than the conventional fuzzy logic controllers do; and 6) it can be realized with low design complexity and small hardware overhead. Furthermore, the proposed approach has been applied to design three well-known nonlinear systems. The simulation and experimental results demonstrate the effectiveness of this design,.</description><subject>Adaptive control</subject><subject>Algorithm design and analysis</subject><subject>Control systems</subject><subject>Design engineering</subject><subject>Design methodology</subject><subject>Dynamical systems</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Genetic algorithms</subject><subject>Linguistics</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Optimal control</subject><subject>Programmable control</subject><subject>Radio access networks</subject><subject>Shape control</subject><subject>Studies</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0s9rFTEQB_BQlLZWT948SPDQHmRrfkx-HUurVSh40fOSl53dpuzbPJNdof3rzeM9LPRgPSVkPpmB4UvIW87OOWfukwRjzh0zSssDcswd8IaBEy_qnVnZAHB3RF6VcscYc8yZQ3LErQAwWh-TcIUlDhNNPfWd38zxN9J-eXi4p2MaYqAhTXNO44iZrnzBjqaJjnEalljmGJpb7AbcooCbuVA_dXTACWuJ-nFIOc636_KavOz9WPDN_jwhP798_nH5tbn5fv3t8uKmCaDM3Kg-sB5AcitdMLK-afQSHNdGrjoIwgLTIKHXWgYpORfSdtyqjuneMKnlCTnb9d3k9GvBMrfrWAKOo58wLaV1HLSu3eyzsk4X4BznVZ7-UwrruBJG_AcUWjlhn4fKaceUqvDDE3iXljzVDbbWgnF1NaaijzsUciolY99uclz7fN9y1m7j0W7j0e7iUfX7fctltcbu0e7zUMG7HYiI-Le8__0HlEK6aQ</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Liu, B D</creator><creator>Chen, C Y</creator><creator>Tsao, J Y</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20010201</creationdate><title>Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms</title><author>Liu, B D ; Chen, C Y ; Tsao, J Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-5fc0f4431839c734576ea3491673bd4c28406434f663c3311238d185d06f70363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adaptive control</topic><topic>Algorithm design and analysis</topic><topic>Control systems</topic><topic>Design engineering</topic><topic>Design methodology</topic><topic>Dynamical systems</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Genetic algorithms</topic><topic>Linguistics</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Optimal control</topic><topic>Programmable control</topic><topic>Radio access networks</topic><topic>Shape control</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, B D</creatorcontrib><creatorcontrib>Chen, C Y</creatorcontrib><creatorcontrib>Tsao, J Y</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, B D</au><au>Chen, C Y</au><au>Tsao, J Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2001-02-01</date><risdate>2001</risdate><volume>31</volume><issue>1</issue><spage>32</spage><epage>53</epage><pages>32-53</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>In this paper, we propose a novel fuzzy logic controller, called linguistic hedge fuzzy logic controller, to simplify the membership function constructions and the rule developments. The design methodology of linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of the linguistic hedges and the genetic algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically, and ran speed up the control result to fit the system demand. The genetic algorithms are adopted to search the optimal linguistic hedge combination in the linguistic hedge module, According to the proposed methodology, the linguistic hedge fuzzy logic controller has the following advantages: 1) it needs only the simple-shape membership functions rather than the carefully designed ones for characterizing the related variables; 2) it is sufficient to adopt a fewer number of rules for inference; 3) the rules are developed intuitionally without heavily depending on the endeavor of experts; 4) the linguistic hedge module associated with the genetic algorithm enables it to be adaptive; 5) it performs better than the conventional fuzzy logic controllers do; and 6) it can be realized with low design complexity and small hardware overhead. Furthermore, the proposed approach has been applied to design three well-known nonlinear systems. The simulation and experimental results demonstrate the effectiveness of this design,.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18244766</pmid><doi>10.1109/3477.907563</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4419 |
ispartof | IEEE transactions on cybernetics, 2001-02, Vol.31 (1), p.32-53 |
issn | 1083-4419 2168-2267 1941-0492 2168-2275 |
language | eng |
recordid | cdi_proquest_miscellaneous_734249911 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Algorithm design and analysis Control systems Design engineering Design methodology Dynamical systems Fuzzy control Fuzzy logic Genetic algorithms Linguistics Mathematical models Modules Optimal control Programmable control Radio access networks Shape control Studies |
title | Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20adaptive%20fuzzy%20logic%20controller%20based%20on%20linguistic-hedge%20concepts%20and%20genetic%20algorithms&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Liu,%20B%20D&rft.date=2001-02-01&rft.volume=31&rft.issue=1&rft.spage=32&rft.epage=53&rft.pages=32-53&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/3477.907563&rft_dat=%3Cproquest_RIE%3E25969055%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884793497&rft_id=info:pmid/18244766&rft_ieee_id=907563&rfr_iscdi=true |