Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms

In this paper, we propose a novel fuzzy logic controller, called linguistic hedge fuzzy logic controller, to simplify the membership function constructions and the rule developments. The design methodology of linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of the ling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2001-02, Vol.31 (1), p.32-53
Hauptverfasser: Liu, B D, Chen, C Y, Tsao, J Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue 1
container_start_page 32
container_title IEEE transactions on cybernetics
container_volume 31
creator Liu, B D
Chen, C Y
Tsao, J Y
description In this paper, we propose a novel fuzzy logic controller, called linguistic hedge fuzzy logic controller, to simplify the membership function constructions and the rule developments. The design methodology of linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of the linguistic hedges and the genetic algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically, and ran speed up the control result to fit the system demand. The genetic algorithms are adopted to search the optimal linguistic hedge combination in the linguistic hedge module, According to the proposed methodology, the linguistic hedge fuzzy logic controller has the following advantages: 1) it needs only the simple-shape membership functions rather than the carefully designed ones for characterizing the related variables; 2) it is sufficient to adopt a fewer number of rules for inference; 3) the rules are developed intuitionally without heavily depending on the endeavor of experts; 4) the linguistic hedge module associated with the genetic algorithm enables it to be adaptive; 5) it performs better than the conventional fuzzy logic controllers do; and 6) it can be realized with low design complexity and small hardware overhead. Furthermore, the proposed approach has been applied to design three well-known nonlinear systems. The simulation and experimental results demonstrate the effectiveness of this design,.
doi_str_mv 10.1109/3477.907563
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_734249911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>907563</ieee_id><sourcerecordid>25969055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-5fc0f4431839c734576ea3491673bd4c28406434f663c3311238d185d06f70363</originalsourceid><addsrcrecordid>eNqN0s9rFTEQB_BQlLZWT948SPDQHmRrfkx-HUurVSh40fOSl53dpuzbPJNdof3rzeM9LPRgPSVkPpmB4UvIW87OOWfukwRjzh0zSssDcswd8IaBEy_qnVnZAHB3RF6VcscYc8yZQ3LErQAwWh-TcIUlDhNNPfWd38zxN9J-eXi4p2MaYqAhTXNO44iZrnzBjqaJjnEalljmGJpb7AbcooCbuVA_dXTACWuJ-nFIOc636_KavOz9WPDN_jwhP798_nH5tbn5fv3t8uKmCaDM3Kg-sB5AcitdMLK-afQSHNdGrjoIwgLTIKHXWgYpORfSdtyqjuneMKnlCTnb9d3k9GvBMrfrWAKOo58wLaV1HLSu3eyzsk4X4BznVZ7-UwrruBJG_AcUWjlhn4fKaceUqvDDE3iXljzVDbbWgnF1NaaijzsUciolY99uclz7fN9y1m7j0W7j0e7iUfX7fctltcbu0e7zUMG7HYiI-Le8__0HlEK6aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884793497</pqid></control><display><type>article</type><title>Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, B D ; Chen, C Y ; Tsao, J Y</creator><creatorcontrib>Liu, B D ; Chen, C Y ; Tsao, J Y</creatorcontrib><description>In this paper, we propose a novel fuzzy logic controller, called linguistic hedge fuzzy logic controller, to simplify the membership function constructions and the rule developments. The design methodology of linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of the linguistic hedges and the genetic algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically, and ran speed up the control result to fit the system demand. The genetic algorithms are adopted to search the optimal linguistic hedge combination in the linguistic hedge module, According to the proposed methodology, the linguistic hedge fuzzy logic controller has the following advantages: 1) it needs only the simple-shape membership functions rather than the carefully designed ones for characterizing the related variables; 2) it is sufficient to adopt a fewer number of rules for inference; 3) the rules are developed intuitionally without heavily depending on the endeavor of experts; 4) the linguistic hedge module associated with the genetic algorithm enables it to be adaptive; 5) it performs better than the conventional fuzzy logic controllers do; and 6) it can be realized with low design complexity and small hardware overhead. Furthermore, the proposed approach has been applied to design three well-known nonlinear systems. The simulation and experimental results demonstrate the effectiveness of this design,.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/3477.907563</identifier><identifier>PMID: 18244766</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive control ; Algorithm design and analysis ; Control systems ; Design engineering ; Design methodology ; Dynamical systems ; Fuzzy control ; Fuzzy logic ; Genetic algorithms ; Linguistics ; Mathematical models ; Modules ; Optimal control ; Programmable control ; Radio access networks ; Shape control ; Studies</subject><ispartof>IEEE transactions on cybernetics, 2001-02, Vol.31 (1), p.32-53</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-5fc0f4431839c734576ea3491673bd4c28406434f663c3311238d185d06f70363</citedby><cites>FETCH-LOGICAL-c457t-5fc0f4431839c734576ea3491673bd4c28406434f663c3311238d185d06f70363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/907563$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/907563$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18244766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, B D</creatorcontrib><creatorcontrib>Chen, C Y</creatorcontrib><creatorcontrib>Tsao, J Y</creatorcontrib><title>Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>In this paper, we propose a novel fuzzy logic controller, called linguistic hedge fuzzy logic controller, to simplify the membership function constructions and the rule developments. The design methodology of linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of the linguistic hedges and the genetic algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically, and ran speed up the control result to fit the system demand. The genetic algorithms are adopted to search the optimal linguistic hedge combination in the linguistic hedge module, According to the proposed methodology, the linguistic hedge fuzzy logic controller has the following advantages: 1) it needs only the simple-shape membership functions rather than the carefully designed ones for characterizing the related variables; 2) it is sufficient to adopt a fewer number of rules for inference; 3) the rules are developed intuitionally without heavily depending on the endeavor of experts; 4) the linguistic hedge module associated with the genetic algorithm enables it to be adaptive; 5) it performs better than the conventional fuzzy logic controllers do; and 6) it can be realized with low design complexity and small hardware overhead. Furthermore, the proposed approach has been applied to design three well-known nonlinear systems. The simulation and experimental results demonstrate the effectiveness of this design,.</description><subject>Adaptive control</subject><subject>Algorithm design and analysis</subject><subject>Control systems</subject><subject>Design engineering</subject><subject>Design methodology</subject><subject>Dynamical systems</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Genetic algorithms</subject><subject>Linguistics</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Optimal control</subject><subject>Programmable control</subject><subject>Radio access networks</subject><subject>Shape control</subject><subject>Studies</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0s9rFTEQB_BQlLZWT948SPDQHmRrfkx-HUurVSh40fOSl53dpuzbPJNdof3rzeM9LPRgPSVkPpmB4UvIW87OOWfukwRjzh0zSssDcswd8IaBEy_qnVnZAHB3RF6VcscYc8yZQ3LErQAwWh-TcIUlDhNNPfWd38zxN9J-eXi4p2MaYqAhTXNO44iZrnzBjqaJjnEalljmGJpb7AbcooCbuVA_dXTACWuJ-nFIOc636_KavOz9WPDN_jwhP798_nH5tbn5fv3t8uKmCaDM3Kg-sB5AcitdMLK-afQSHNdGrjoIwgLTIKHXWgYpORfSdtyqjuneMKnlCTnb9d3k9GvBMrfrWAKOo58wLaV1HLSu3eyzsk4X4BznVZ7-UwrruBJG_AcUWjlhn4fKaceUqvDDE3iXljzVDbbWgnF1NaaijzsUciolY99uclz7fN9y1m7j0W7j0e7iUfX7fctltcbu0e7zUMG7HYiI-Le8__0HlEK6aQ</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Liu, B D</creator><creator>Chen, C Y</creator><creator>Tsao, J Y</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20010201</creationdate><title>Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms</title><author>Liu, B D ; Chen, C Y ; Tsao, J Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-5fc0f4431839c734576ea3491673bd4c28406434f663c3311238d185d06f70363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adaptive control</topic><topic>Algorithm design and analysis</topic><topic>Control systems</topic><topic>Design engineering</topic><topic>Design methodology</topic><topic>Dynamical systems</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Genetic algorithms</topic><topic>Linguistics</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Optimal control</topic><topic>Programmable control</topic><topic>Radio access networks</topic><topic>Shape control</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, B D</creatorcontrib><creatorcontrib>Chen, C Y</creatorcontrib><creatorcontrib>Tsao, J Y</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, B D</au><au>Chen, C Y</au><au>Tsao, J Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2001-02-01</date><risdate>2001</risdate><volume>31</volume><issue>1</issue><spage>32</spage><epage>53</epage><pages>32-53</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>In this paper, we propose a novel fuzzy logic controller, called linguistic hedge fuzzy logic controller, to simplify the membership function constructions and the rule developments. The design methodology of linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of the linguistic hedges and the genetic algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically, and ran speed up the control result to fit the system demand. The genetic algorithms are adopted to search the optimal linguistic hedge combination in the linguistic hedge module, According to the proposed methodology, the linguistic hedge fuzzy logic controller has the following advantages: 1) it needs only the simple-shape membership functions rather than the carefully designed ones for characterizing the related variables; 2) it is sufficient to adopt a fewer number of rules for inference; 3) the rules are developed intuitionally without heavily depending on the endeavor of experts; 4) the linguistic hedge module associated with the genetic algorithm enables it to be adaptive; 5) it performs better than the conventional fuzzy logic controllers do; and 6) it can be realized with low design complexity and small hardware overhead. Furthermore, the proposed approach has been applied to design three well-known nonlinear systems. The simulation and experimental results demonstrate the effectiveness of this design,.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18244766</pmid><doi>10.1109/3477.907563</doi><tpages>22</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2001-02, Vol.31 (1), p.32-53
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_proquest_miscellaneous_734249911
source IEEE Electronic Library (IEL)
subjects Adaptive control
Algorithm design and analysis
Control systems
Design engineering
Design methodology
Dynamical systems
Fuzzy control
Fuzzy logic
Genetic algorithms
Linguistics
Mathematical models
Modules
Optimal control
Programmable control
Radio access networks
Shape control
Studies
title Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20adaptive%20fuzzy%20logic%20controller%20based%20on%20linguistic-hedge%20concepts%20and%20genetic%20algorithms&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Liu,%20B%20D&rft.date=2001-02-01&rft.volume=31&rft.issue=1&rft.spage=32&rft.epage=53&rft.pages=32-53&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/3477.907563&rft_dat=%3Cproquest_RIE%3E25969055%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884793497&rft_id=info:pmid/18244766&rft_ieee_id=907563&rfr_iscdi=true