Neural-network predictive control for nonlinear dynamic systems with time-delay
A new recurrent neural-network predictive feedback control structure for a class of uncertain nonlinear dynamic time-delay systems in canonical form is developed and analyzed. The dynamic system has constant input and feedback time delays due to a communications channel. The proposed control structu...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2003-03, Vol.14 (2), p.377-389 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 389 |
---|---|
container_issue | 2 |
container_start_page | 377 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 14 |
creator | Jin-Quan Huang Lewis, F.L. |
description | A new recurrent neural-network predictive feedback control structure for a class of uncertain nonlinear dynamic time-delay systems in canonical form is developed and analyzed. The dynamic system has constant input and feedback time delays due to a communications channel. The proposed control structure consists of a linearized subsystem local to the controlled plant and a remote predictive controller located at the master command station. In the local linearized subsystem, a recurrent neural network with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant. No linearity in the unknown parameters is required. No preliminary off-line weight learning is needed. The remote controller is a modified Smith predictor that provides prediction and maintains the desired tracking performance; an extra robustifying term is needed to guarantee stability. Rigorous stability proofs are given using Lyapunov analysis. The result is an adaptive neural net compensation scheme for unknown nonlinear systems with time delays. A simulation example is provided to demonstrate the effectiveness of the proposed control strategy. |
doi_str_mv | 10.1109/TNN.2003.809424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_734249459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1189635</ieee_id><sourcerecordid>734249459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-1ccd27369334b175723e910ca74ebd9c64900ed31e013b6363364fd0aa06ee953</originalsourceid><addsrcrecordid>eNqF0UFrFDEUwPEgFlurZw-CDD3oabYveZnMvKOUqoWyvdRzyGbeYurMZE1mLPvtTdmFggc9JZBfHiR_Id5JWEkJdHm_Xq8UAK46IK30C3EmScsagPBl2YNualKqPRWvc34AkLoB80qcyk5hBwrOxN2al-SGeuL5Maaf1S5xH_wcfnPl4zSnOFTbmKopTkOY2KWq309uDL7K-zzzmKvHMP-o5jBy3fPg9m_EydYNmd8e13Px_cv1_dW3-vbu683V59vaa9BzLb3vVYuGEPVGtk2rkEmCd63mTU_eaALgHiWDxI1Bg2j0tgfnwDBTg-fi02HuLsVfC-fZjiF7HgY3cVyyJZCtVNSY_8oWy8eRbqjIj_-UqtOtBOwKvPgLPsQlTeW9lhR0hjRiQZcH5FPMOfHW7lIYXdpbCfYpni3x7FM8e4hXbnw4jl02I_fP_lirgPcHEJj5-Vh2ZLDBP2lSnBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920869433</pqid></control><display><type>article</type><title>Neural-network predictive control for nonlinear dynamic systems with time-delay</title><source>IEEE Electronic Library (IEL)</source><creator>Jin-Quan Huang ; Lewis, F.L.</creator><creatorcontrib>Jin-Quan Huang ; Lewis, F.L.</creatorcontrib><description>A new recurrent neural-network predictive feedback control structure for a class of uncertain nonlinear dynamic time-delay systems in canonical form is developed and analyzed. The dynamic system has constant input and feedback time delays due to a communications channel. The proposed control structure consists of a linearized subsystem local to the controlled plant and a remote predictive controller located at the master command station. In the local linearized subsystem, a recurrent neural network with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant. No linearity in the unknown parameters is required. No preliminary off-line weight learning is needed. The remote controller is a modified Smith predictor that provides prediction and maintains the desired tracking performance; an extra robustifying term is needed to guarantee stability. Rigorous stability proofs are given using Lyapunov analysis. The result is an adaptive neural net compensation scheme for unknown nonlinear systems with time delays. A simulation example is provided to demonstrate the effectiveness of the proposed control strategy.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2003.809424</identifier><identifier>PMID: 18238020</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Communication channels ; Communication system control ; Delay effects ; Feedback control ; Linearity ; Neural networks ; Neurofeedback ; Nonlinear dynamical systems ; Predictive control ; Recurrent neural networks ; Robust stability ; Studies</subject><ispartof>IEEE transaction on neural networks and learning systems, 2003-03, Vol.14 (2), p.377-389</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-1ccd27369334b175723e910ca74ebd9c64900ed31e013b6363364fd0aa06ee953</citedby><cites>FETCH-LOGICAL-c404t-1ccd27369334b175723e910ca74ebd9c64900ed31e013b6363364fd0aa06ee953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1189635$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1189635$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18238020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin-Quan Huang</creatorcontrib><creatorcontrib>Lewis, F.L.</creatorcontrib><title>Neural-network predictive control for nonlinear dynamic systems with time-delay</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>A new recurrent neural-network predictive feedback control structure for a class of uncertain nonlinear dynamic time-delay systems in canonical form is developed and analyzed. The dynamic system has constant input and feedback time delays due to a communications channel. The proposed control structure consists of a linearized subsystem local to the controlled plant and a remote predictive controller located at the master command station. In the local linearized subsystem, a recurrent neural network with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant. No linearity in the unknown parameters is required. No preliminary off-line weight learning is needed. The remote controller is a modified Smith predictor that provides prediction and maintains the desired tracking performance; an extra robustifying term is needed to guarantee stability. Rigorous stability proofs are given using Lyapunov analysis. The result is an adaptive neural net compensation scheme for unknown nonlinear systems with time delays. A simulation example is provided to demonstrate the effectiveness of the proposed control strategy.</description><subject>Communication channels</subject><subject>Communication system control</subject><subject>Delay effects</subject><subject>Feedback control</subject><subject>Linearity</subject><subject>Neural networks</subject><subject>Neurofeedback</subject><subject>Nonlinear dynamical systems</subject><subject>Predictive control</subject><subject>Recurrent neural networks</subject><subject>Robust stability</subject><subject>Studies</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UFrFDEUwPEgFlurZw-CDD3oabYveZnMvKOUqoWyvdRzyGbeYurMZE1mLPvtTdmFggc9JZBfHiR_Id5JWEkJdHm_Xq8UAK46IK30C3EmScsagPBl2YNualKqPRWvc34AkLoB80qcyk5hBwrOxN2al-SGeuL5Maaf1S5xH_wcfnPl4zSnOFTbmKopTkOY2KWq309uDL7K-zzzmKvHMP-o5jBy3fPg9m_EydYNmd8e13Px_cv1_dW3-vbu683V59vaa9BzLb3vVYuGEPVGtk2rkEmCd63mTU_eaALgHiWDxI1Bg2j0tgfnwDBTg-fi02HuLsVfC-fZjiF7HgY3cVyyJZCtVNSY_8oWy8eRbqjIj_-UqtOtBOwKvPgLPsQlTeW9lhR0hjRiQZcH5FPMOfHW7lIYXdpbCfYpni3x7FM8e4hXbnw4jl02I_fP_lirgPcHEJj5-Vh2ZLDBP2lSnBk</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Jin-Quan Huang</creator><creator>Lewis, F.L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030301</creationdate><title>Neural-network predictive control for nonlinear dynamic systems with time-delay</title><author>Jin-Quan Huang ; Lewis, F.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-1ccd27369334b175723e910ca74ebd9c64900ed31e013b6363364fd0aa06ee953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Communication channels</topic><topic>Communication system control</topic><topic>Delay effects</topic><topic>Feedback control</topic><topic>Linearity</topic><topic>Neural networks</topic><topic>Neurofeedback</topic><topic>Nonlinear dynamical systems</topic><topic>Predictive control</topic><topic>Recurrent neural networks</topic><topic>Robust stability</topic><topic>Studies</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin-Quan Huang</creatorcontrib><creatorcontrib>Lewis, F.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin-Quan Huang</au><au>Lewis, F.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-network predictive control for nonlinear dynamic systems with time-delay</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2003-03-01</date><risdate>2003</risdate><volume>14</volume><issue>2</issue><spage>377</spage><epage>389</epage><pages>377-389</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>A new recurrent neural-network predictive feedback control structure for a class of uncertain nonlinear dynamic time-delay systems in canonical form is developed and analyzed. The dynamic system has constant input and feedback time delays due to a communications channel. The proposed control structure consists of a linearized subsystem local to the controlled plant and a remote predictive controller located at the master command station. In the local linearized subsystem, a recurrent neural network with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant. No linearity in the unknown parameters is required. No preliminary off-line weight learning is needed. The remote controller is a modified Smith predictor that provides prediction and maintains the desired tracking performance; an extra robustifying term is needed to guarantee stability. Rigorous stability proofs are given using Lyapunov analysis. The result is an adaptive neural net compensation scheme for unknown nonlinear systems with time delays. A simulation example is provided to demonstrate the effectiveness of the proposed control strategy.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18238020</pmid><doi>10.1109/TNN.2003.809424</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9227 |
ispartof | IEEE transaction on neural networks and learning systems, 2003-03, Vol.14 (2), p.377-389 |
issn | 1045-9227 2162-237X 1941-0093 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_734249459 |
source | IEEE Electronic Library (IEL) |
subjects | Communication channels Communication system control Delay effects Feedback control Linearity Neural networks Neurofeedback Nonlinear dynamical systems Predictive control Recurrent neural networks Robust stability Studies |
title | Neural-network predictive control for nonlinear dynamic systems with time-delay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-network%20predictive%20control%20for%20nonlinear%20dynamic%20systems%20with%20time-delay&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Jin-Quan%20Huang&rft.date=2003-03-01&rft.volume=14&rft.issue=2&rft.spage=377&rft.epage=389&rft.pages=377-389&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2003.809424&rft_dat=%3Cproquest_RIE%3E734249459%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920869433&rft_id=info:pmid/18238020&rft_ieee_id=1189635&rfr_iscdi=true |