The application of competitive Hopfield neural network to medical image segmentation

In this paper, a parallel and unsupervised approach using the competitive Hopfield neural network (CHNN) is proposed for medical image segmentation. It is a kind of Hopfield network which incorporates the winner-takes-all (WTA) learning mechanism. The image segmentation is conceptually formulated as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 1996-08, Vol.15 (4), p.560-567
Hauptverfasser: CHENG, K.-S, LIN, J.-S, MAO, C.-W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 567
container_issue 4
container_start_page 560
container_title IEEE transactions on medical imaging
container_volume 15
creator CHENG, K.-S
LIN, J.-S
MAO, C.-W
description In this paper, a parallel and unsupervised approach using the competitive Hopfield neural network (CHNN) is proposed for medical image segmentation. It is a kind of Hopfield network which incorporates the winner-takes-all (WTA) learning mechanism. The image segmentation is conceptually formulated as a problem of pixel clustering based upon the global information of the gray level distribution. Thus, the energy function for minimization is defined as the mean of the squared distance measures of the gray levels within each class. The proposed network avoids the onerous procedure of determining values for the weighting factors in the energy function. In addition, its training scheme enables the network to learn rapidly and effectively. For an image of n gray levels and c interesting objects, the proposed CHNN would consist of n by c neurons and be independent of the image size. In both simulation studies and practical medical image segmentation, the CHNN method shows promising results in comparison with two well-known methods: the hard and the fuzzy c-means (FCM) methods.
doi_str_mv 10.1109/42.511759
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_734246401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>511759</ieee_id><sourcerecordid>734246401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-370432a5d5af040e6a1c5afedc2bbf066ade3677bdb0f5acf8294b60e7a400573</originalsourceid><addsrcrecordid>eNqF0U1P3DAQBmCrKoJly6HXHpAPCMQh2_FXnBwRKh8SUi9biVvkOOOt2yRO4yyo_76mGy03OI0lP_OONEPIZwYrxqD8KvlKMaZV-YEsmFJFxpV8_EgWwHWRAeT8iBzH-AuASQXlITliBWeqFHpB1uufSM0wtN6ayYeeBkdt6Aac_OSfkN6FwXlsG9rjdjRtKtNzGH_TKdAOm9TUUt-ZDdKImw776X_IJ3LgTBvxZK5L8uPm2_r6Lnv4fnt_ffWQWVHyKRMapOBGNco4kIC5YTY9sbG8rh3kuWlQ5FrXTQ1OGesKXso6B9RGAigtluRilzuM4c8W41R1PlpsW9Nj2MZKC8llLoElef6m5EWewsX7kKWxJVNFgpc7aMcQ44iuGsa0ifFvxaB6uUolebW7SrKnc-i2Tlt7lfMZEjibgYlppW40vfVx7wQrBS9kYl92zCPi_nce8g9yz5x1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15739158</pqid></control><display><type>article</type><title>The application of competitive Hopfield neural network to medical image segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>CHENG, K.-S ; LIN, J.-S ; MAO, C.-W</creator><creatorcontrib>CHENG, K.-S ; LIN, J.-S ; MAO, C.-W</creatorcontrib><description>In this paper, a parallel and unsupervised approach using the competitive Hopfield neural network (CHNN) is proposed for medical image segmentation. It is a kind of Hopfield network which incorporates the winner-takes-all (WTA) learning mechanism. The image segmentation is conceptually formulated as a problem of pixel clustering based upon the global information of the gray level distribution. Thus, the energy function for minimization is defined as the mean of the squared distance measures of the gray levels within each class. The proposed network avoids the onerous procedure of determining values for the weighting factors in the energy function. In addition, its training scheme enables the network to learn rapidly and effectively. For an image of n gray levels and c interesting objects, the proposed CHNN would consist of n by c neurons and be independent of the image size. In both simulation studies and practical medical image segmentation, the CHNN method shows promising results in comparison with two well-known methods: the hard and the fuzzy c-means (FCM) methods.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/42.511759</identifier><identifier>PMID: 18215937</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Anatomical structure ; Biological and medical sciences ; Biomedical imaging ; Brain ; Computerized, statistical medical data processing and models in biomedicine ; Hopfield neural networks ; Image segmentation ; Learning systems ; Medical computing and teaching ; Medical diagnostic imaging ; Medical sciences ; Medical simulation ; Multi-layer neural network ; Pixel</subject><ispartof>IEEE transactions on medical imaging, 1996-08, Vol.15 (4), p.560-567</ispartof><rights>1996 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-370432a5d5af040e6a1c5afedc2bbf066ade3677bdb0f5acf8294b60e7a400573</citedby><cites>FETCH-LOGICAL-c392t-370432a5d5af040e6a1c5afedc2bbf066ade3677bdb0f5acf8294b60e7a400573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/511759$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/511759$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3193284$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18215937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>CHENG, K.-S</creatorcontrib><creatorcontrib>LIN, J.-S</creatorcontrib><creatorcontrib>MAO, C.-W</creatorcontrib><title>The application of competitive Hopfield neural network to medical image segmentation</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>In this paper, a parallel and unsupervised approach using the competitive Hopfield neural network (CHNN) is proposed for medical image segmentation. It is a kind of Hopfield network which incorporates the winner-takes-all (WTA) learning mechanism. The image segmentation is conceptually formulated as a problem of pixel clustering based upon the global information of the gray level distribution. Thus, the energy function for minimization is defined as the mean of the squared distance measures of the gray levels within each class. The proposed network avoids the onerous procedure of determining values for the weighting factors in the energy function. In addition, its training scheme enables the network to learn rapidly and effectively. For an image of n gray levels and c interesting objects, the proposed CHNN would consist of n by c neurons and be independent of the image size. In both simulation studies and practical medical image segmentation, the CHNN method shows promising results in comparison with two well-known methods: the hard and the fuzzy c-means (FCM) methods.</description><subject>Anatomical structure</subject><subject>Biological and medical sciences</subject><subject>Biomedical imaging</subject><subject>Brain</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Hopfield neural networks</subject><subject>Image segmentation</subject><subject>Learning systems</subject><subject>Medical computing and teaching</subject><subject>Medical diagnostic imaging</subject><subject>Medical sciences</subject><subject>Medical simulation</subject><subject>Multi-layer neural network</subject><subject>Pixel</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqF0U1P3DAQBmCrKoJly6HXHpAPCMQh2_FXnBwRKh8SUi9biVvkOOOt2yRO4yyo_76mGy03OI0lP_OONEPIZwYrxqD8KvlKMaZV-YEsmFJFxpV8_EgWwHWRAeT8iBzH-AuASQXlITliBWeqFHpB1uufSM0wtN6ayYeeBkdt6Aac_OSfkN6FwXlsG9rjdjRtKtNzGH_TKdAOm9TUUt-ZDdKImw776X_IJ3LgTBvxZK5L8uPm2_r6Lnv4fnt_ffWQWVHyKRMapOBGNco4kIC5YTY9sbG8rh3kuWlQ5FrXTQ1OGesKXso6B9RGAigtluRilzuM4c8W41R1PlpsW9Nj2MZKC8llLoElef6m5EWewsX7kKWxJVNFgpc7aMcQ44iuGsa0ifFvxaB6uUolebW7SrKnc-i2Tlt7lfMZEjibgYlppW40vfVx7wQrBS9kYl92zCPi_nce8g9yz5x1</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>CHENG, K.-S</creator><creator>LIN, J.-S</creator><creator>MAO, C.-W</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>7U5</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19960801</creationdate><title>The application of competitive Hopfield neural network to medical image segmentation</title><author>CHENG, K.-S ; LIN, J.-S ; MAO, C.-W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-370432a5d5af040e6a1c5afedc2bbf066ade3677bdb0f5acf8294b60e7a400573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Anatomical structure</topic><topic>Biological and medical sciences</topic><topic>Biomedical imaging</topic><topic>Brain</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Hopfield neural networks</topic><topic>Image segmentation</topic><topic>Learning systems</topic><topic>Medical computing and teaching</topic><topic>Medical diagnostic imaging</topic><topic>Medical sciences</topic><topic>Medical simulation</topic><topic>Multi-layer neural network</topic><topic>Pixel</topic><toplevel>online_resources</toplevel><creatorcontrib>CHENG, K.-S</creatorcontrib><creatorcontrib>LIN, J.-S</creatorcontrib><creatorcontrib>MAO, C.-W</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHENG, K.-S</au><au>LIN, J.-S</au><au>MAO, C.-W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The application of competitive Hopfield neural network to medical image segmentation</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>1996-08-01</date><risdate>1996</risdate><volume>15</volume><issue>4</issue><spage>560</spage><epage>567</epage><pages>560-567</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>In this paper, a parallel and unsupervised approach using the competitive Hopfield neural network (CHNN) is proposed for medical image segmentation. It is a kind of Hopfield network which incorporates the winner-takes-all (WTA) learning mechanism. The image segmentation is conceptually formulated as a problem of pixel clustering based upon the global information of the gray level distribution. Thus, the energy function for minimization is defined as the mean of the squared distance measures of the gray levels within each class. The proposed network avoids the onerous procedure of determining values for the weighting factors in the energy function. In addition, its training scheme enables the network to learn rapidly and effectively. For an image of n gray levels and c interesting objects, the proposed CHNN would consist of n by c neurons and be independent of the image size. In both simulation studies and practical medical image segmentation, the CHNN method shows promising results in comparison with two well-known methods: the hard and the fuzzy c-means (FCM) methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18215937</pmid><doi>10.1109/42.511759</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 1996-08, Vol.15 (4), p.560-567
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_734246401
source IEEE Electronic Library (IEL)
subjects Anatomical structure
Biological and medical sciences
Biomedical imaging
Brain
Computerized, statistical medical data processing and models in biomedicine
Hopfield neural networks
Image segmentation
Learning systems
Medical computing and teaching
Medical diagnostic imaging
Medical sciences
Medical simulation
Multi-layer neural network
Pixel
title The application of competitive Hopfield neural network to medical image segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20application%20of%20competitive%20Hopfield%20neural%20network%20to%20medical%20image%20segmentation&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=CHENG,%20K.-S&rft.date=1996-08-01&rft.volume=15&rft.issue=4&rft.spage=560&rft.epage=567&rft.pages=560-567&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/42.511759&rft_dat=%3Cproquest_RIE%3E734246401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15739158&rft_id=info:pmid/18215937&rft_ieee_id=511759&rfr_iscdi=true