Fuzzy support vector machines

A support vector machine (SVM) learns the decision surface from two distinct classes of the input points. In many applications, each input point may not be fully assigned to one of these two classes. In this paper, we apply a fuzzy membership to each input point and reformulate the SVMs such that di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2002-03, Vol.13 (2), p.464-471
Hauptverfasser: Lin, Chun-Fu, Wang, Sheng-De
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A support vector machine (SVM) learns the decision surface from two distinct classes of the input points. In many applications, each input point may not be fully assigned to one of these two classes. In this paper, we apply a fuzzy membership to each input point and reformulate the SVMs such that different input points can make different contributions to the learning of decision surface. We call the proposed method fuzzy SVMs (FSVMs).
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/72.991432