Turtle groups or turtle soup: dispersal patterns of hawksbill turtles in the Caribbean

Despite intense interest in conservation of marine turtles, spatial ecology during the oceanic juvenile phase remains relatively unknown. Here, we used mixed stock analysis and examination of oceanic drift to elucidate movements of hawksbill turtles (Eretmochelys imbricata) and address management im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2009-12, Vol.18 (23), p.4841-4853
Hauptverfasser: BLUMENTHAL, J. M., ABREU-GROBOIS, F. A., AUSTIN, T. J., BRODERICK, A. C., BRUFORD, M. W., COYNE, M. S., EBANKS-PETRIE, G., FORMIA, A., MEYLAN, P. A., MEYLAN, A. B., GODLEY, B. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4853
container_issue 23
container_start_page 4841
container_title Molecular ecology
container_volume 18
creator BLUMENTHAL, J. M.
ABREU-GROBOIS, F. A.
AUSTIN, T. J.
BRODERICK, A. C.
BRUFORD, M. W.
COYNE, M. S.
EBANKS-PETRIE, G.
FORMIA, A.
MEYLAN, P. A.
MEYLAN, A. B.
GODLEY, B. J.
description Despite intense interest in conservation of marine turtles, spatial ecology during the oceanic juvenile phase remains relatively unknown. Here, we used mixed stock analysis and examination of oceanic drift to elucidate movements of hawksbill turtles (Eretmochelys imbricata) and address management implications within the Caribbean. Among samples collected from 92 neritic juvenile hawksbills in the Cayman Islands we detected 11 mtDNA control region haplotypes. To estimate contributions to the aggregation, we performed ‘many‐to‐many’ mixed stock analysis, incorporating published hawksbill genetic and population data. The Cayman Islands aggregation represents a diverse mixed stock: potentially contributing source rookeries spanned the Caribbean basin, delineating a scale of recruitment of 200–2500 km. As hawksbills undergo an extended phase of oceanic dispersal, ocean currents may drive patterns of genetic diversity observed on foraging aggregations. Therefore, using high‐resolution Aviso ocean current data, we modelled movement of particles representing passively drifting oceanic juvenile hawksbills. Putative distribution patterns varied markedly by origin: particles from many rookeries were broadly distributed across the region, while others would appear to become entrained in local gyres. Overall, we detected a significant correlation between genetic profiles of foraging aggregations and patterns of particle distribution produced by a hatchling drift model (Mantel test, r = 0.77, P 
doi_str_mv 10.1111/j.1365-294X.2009.04403.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734239613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1903114121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5543-27f5998d5e5307530da6491faa4acdc15d472ffb560e452e7bcde49ea0698bf13</originalsourceid><addsrcrecordid>eNqNkM1u1DAUhS0EokPhFZDFhlWCf-MYiQWKSkFqhwWlsLtykhuaaSZJ7USdvj0OGRWJFZYs_33nyPoIoZylPI53u5TLTCfCqp-pYMymTCkm08MTsnl8eEo2zGYi4SyXJ-RFCDvGuBRaPycn3Oa5ZdJuyPXV7KcO6S8_zGOgg6fTehHi-T2t2zCiD66jo5sm9H1EGnrj7m9D2XbdEQ607el0g7Rwvi1LdP1L8qxxXcBXx_WUfP90dlV8Ti6-nn8pPl4kldZKJsI02tq81qglM3HWLlOWN84pV9UV17UyomlKnTFUWqApqxqVRccym5cNl6fk7do7-uFuxjDBvg0Vdp3rcZgDGKmEtBmXkXzzD7kbZt_Hz4HgS50RIkL5ClV-CMFjA6Nv984_AGewmIcdLIJhEQyLefhjHg4x-vrYP5d7rP8Gj6oj8GEF7tsOH_67GC7PimUX88mab8OEh8e887eQGWk0_Niew7XcXpptsYVv8jfXL6G2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210698722</pqid></control><display><type>article</type><title>Turtle groups or turtle soup: dispersal patterns of hawksbill turtles in the Caribbean</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>BLUMENTHAL, J. M. ; ABREU-GROBOIS, F. A. ; AUSTIN, T. J. ; BRODERICK, A. C. ; BRUFORD, M. W. ; COYNE, M. S. ; EBANKS-PETRIE, G. ; FORMIA, A. ; MEYLAN, P. A. ; MEYLAN, A. B. ; GODLEY, B. J.</creator><creatorcontrib>BLUMENTHAL, J. M. ; ABREU-GROBOIS, F. A. ; AUSTIN, T. J. ; BRODERICK, A. C. ; BRUFORD, M. W. ; COYNE, M. S. ; EBANKS-PETRIE, G. ; FORMIA, A. ; MEYLAN, P. A. ; MEYLAN, A. B. ; GODLEY, B. J.</creatorcontrib><description>Despite intense interest in conservation of marine turtles, spatial ecology during the oceanic juvenile phase remains relatively unknown. Here, we used mixed stock analysis and examination of oceanic drift to elucidate movements of hawksbill turtles (Eretmochelys imbricata) and address management implications within the Caribbean. Among samples collected from 92 neritic juvenile hawksbills in the Cayman Islands we detected 11 mtDNA control region haplotypes. To estimate contributions to the aggregation, we performed ‘many‐to‐many’ mixed stock analysis, incorporating published hawksbill genetic and population data. The Cayman Islands aggregation represents a diverse mixed stock: potentially contributing source rookeries spanned the Caribbean basin, delineating a scale of recruitment of 200–2500 km. As hawksbills undergo an extended phase of oceanic dispersal, ocean currents may drive patterns of genetic diversity observed on foraging aggregations. Therefore, using high‐resolution Aviso ocean current data, we modelled movement of particles representing passively drifting oceanic juvenile hawksbills. Putative distribution patterns varied markedly by origin: particles from many rookeries were broadly distributed across the region, while others would appear to become entrained in local gyres. Overall, we detected a significant correlation between genetic profiles of foraging aggregations and patterns of particle distribution produced by a hatchling drift model (Mantel test, r = 0.77, P &lt; 0.001; linear regression, r = 0.83, P &lt; 0.001). Our results indicate that although there is a high degree of mixing across the Caribbean (a ‘turtle soup’), current patterns play a substantial role in determining genetic structure of foraging aggregations (forming turtle groups). Thus, for marine turtles and other widely distributed marine species, integration of genetic and oceanographic data may enhance understanding of population connectivity and management requirements.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/j.1365-294X.2009.04403.x</identifier><identifier>PMID: 19889039</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Caribbean Region ; conservation genetics ; Conservation of Natural Resources ; Dispersal ; DNA, Mitochondrial - genetics ; Genetic Variation ; Genetics, Population ; Geography ; Habitats ; Haplotypes ; hawksbill ; marine turtle ; migratory species ; mixed stock ; Models, Biological ; ocean currents ; Reptiles &amp; amphibians ; Sequence Analysis, DNA ; Turtles - genetics ; Water Movements</subject><ispartof>Molecular ecology, 2009-12, Vol.18 (23), p.4841-4853</ispartof><rights>2009 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5543-27f5998d5e5307530da6491faa4acdc15d472ffb560e452e7bcde49ea0698bf13</citedby><cites>FETCH-LOGICAL-c5543-27f5998d5e5307530da6491faa4acdc15d472ffb560e452e7bcde49ea0698bf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-294X.2009.04403.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-294X.2009.04403.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19889039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BLUMENTHAL, J. M.</creatorcontrib><creatorcontrib>ABREU-GROBOIS, F. A.</creatorcontrib><creatorcontrib>AUSTIN, T. J.</creatorcontrib><creatorcontrib>BRODERICK, A. C.</creatorcontrib><creatorcontrib>BRUFORD, M. W.</creatorcontrib><creatorcontrib>COYNE, M. S.</creatorcontrib><creatorcontrib>EBANKS-PETRIE, G.</creatorcontrib><creatorcontrib>FORMIA, A.</creatorcontrib><creatorcontrib>MEYLAN, P. A.</creatorcontrib><creatorcontrib>MEYLAN, A. B.</creatorcontrib><creatorcontrib>GODLEY, B. J.</creatorcontrib><title>Turtle groups or turtle soup: dispersal patterns of hawksbill turtles in the Caribbean</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Despite intense interest in conservation of marine turtles, spatial ecology during the oceanic juvenile phase remains relatively unknown. Here, we used mixed stock analysis and examination of oceanic drift to elucidate movements of hawksbill turtles (Eretmochelys imbricata) and address management implications within the Caribbean. Among samples collected from 92 neritic juvenile hawksbills in the Cayman Islands we detected 11 mtDNA control region haplotypes. To estimate contributions to the aggregation, we performed ‘many‐to‐many’ mixed stock analysis, incorporating published hawksbill genetic and population data. The Cayman Islands aggregation represents a diverse mixed stock: potentially contributing source rookeries spanned the Caribbean basin, delineating a scale of recruitment of 200–2500 km. As hawksbills undergo an extended phase of oceanic dispersal, ocean currents may drive patterns of genetic diversity observed on foraging aggregations. Therefore, using high‐resolution Aviso ocean current data, we modelled movement of particles representing passively drifting oceanic juvenile hawksbills. Putative distribution patterns varied markedly by origin: particles from many rookeries were broadly distributed across the region, while others would appear to become entrained in local gyres. Overall, we detected a significant correlation between genetic profiles of foraging aggregations and patterns of particle distribution produced by a hatchling drift model (Mantel test, r = 0.77, P &lt; 0.001; linear regression, r = 0.83, P &lt; 0.001). Our results indicate that although there is a high degree of mixing across the Caribbean (a ‘turtle soup’), current patterns play a substantial role in determining genetic structure of foraging aggregations (forming turtle groups). Thus, for marine turtles and other widely distributed marine species, integration of genetic and oceanographic data may enhance understanding of population connectivity and management requirements.</description><subject>Animals</subject><subject>Caribbean Region</subject><subject>conservation genetics</subject><subject>Conservation of Natural Resources</subject><subject>Dispersal</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Geography</subject><subject>Habitats</subject><subject>Haplotypes</subject><subject>hawksbill</subject><subject>marine turtle</subject><subject>migratory species</subject><subject>mixed stock</subject><subject>Models, Biological</subject><subject>ocean currents</subject><subject>Reptiles &amp; amphibians</subject><subject>Sequence Analysis, DNA</subject><subject>Turtles - genetics</subject><subject>Water Movements</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1u1DAUhS0EokPhFZDFhlWCf-MYiQWKSkFqhwWlsLtykhuaaSZJ7USdvj0OGRWJFZYs_33nyPoIoZylPI53u5TLTCfCqp-pYMymTCkm08MTsnl8eEo2zGYi4SyXJ-RFCDvGuBRaPycn3Oa5ZdJuyPXV7KcO6S8_zGOgg6fTehHi-T2t2zCiD66jo5sm9H1EGnrj7m9D2XbdEQ607el0g7Rwvi1LdP1L8qxxXcBXx_WUfP90dlV8Ti6-nn8pPl4kldZKJsI02tq81qglM3HWLlOWN84pV9UV17UyomlKnTFUWqApqxqVRccym5cNl6fk7do7-uFuxjDBvg0Vdp3rcZgDGKmEtBmXkXzzD7kbZt_Hz4HgS50RIkL5ClV-CMFjA6Nv984_AGewmIcdLIJhEQyLefhjHg4x-vrYP5d7rP8Gj6oj8GEF7tsOH_67GC7PimUX88mab8OEh8e887eQGWk0_Niew7XcXpptsYVv8jfXL6G2</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>BLUMENTHAL, J. M.</creator><creator>ABREU-GROBOIS, F. A.</creator><creator>AUSTIN, T. J.</creator><creator>BRODERICK, A. C.</creator><creator>BRUFORD, M. W.</creator><creator>COYNE, M. S.</creator><creator>EBANKS-PETRIE, G.</creator><creator>FORMIA, A.</creator><creator>MEYLAN, P. A.</creator><creator>MEYLAN, A. B.</creator><creator>GODLEY, B. J.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200912</creationdate><title>Turtle groups or turtle soup: dispersal patterns of hawksbill turtles in the Caribbean</title><author>BLUMENTHAL, J. M. ; ABREU-GROBOIS, F. A. ; AUSTIN, T. J. ; BRODERICK, A. C. ; BRUFORD, M. W. ; COYNE, M. S. ; EBANKS-PETRIE, G. ; FORMIA, A. ; MEYLAN, P. A. ; MEYLAN, A. B. ; GODLEY, B. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5543-27f5998d5e5307530da6491faa4acdc15d472ffb560e452e7bcde49ea0698bf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Caribbean Region</topic><topic>conservation genetics</topic><topic>Conservation of Natural Resources</topic><topic>Dispersal</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Geography</topic><topic>Habitats</topic><topic>Haplotypes</topic><topic>hawksbill</topic><topic>marine turtle</topic><topic>migratory species</topic><topic>mixed stock</topic><topic>Models, Biological</topic><topic>ocean currents</topic><topic>Reptiles &amp; amphibians</topic><topic>Sequence Analysis, DNA</topic><topic>Turtles - genetics</topic><topic>Water Movements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BLUMENTHAL, J. M.</creatorcontrib><creatorcontrib>ABREU-GROBOIS, F. A.</creatorcontrib><creatorcontrib>AUSTIN, T. J.</creatorcontrib><creatorcontrib>BRODERICK, A. C.</creatorcontrib><creatorcontrib>BRUFORD, M. W.</creatorcontrib><creatorcontrib>COYNE, M. S.</creatorcontrib><creatorcontrib>EBANKS-PETRIE, G.</creatorcontrib><creatorcontrib>FORMIA, A.</creatorcontrib><creatorcontrib>MEYLAN, P. A.</creatorcontrib><creatorcontrib>MEYLAN, A. B.</creatorcontrib><creatorcontrib>GODLEY, B. J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BLUMENTHAL, J. M.</au><au>ABREU-GROBOIS, F. A.</au><au>AUSTIN, T. J.</au><au>BRODERICK, A. C.</au><au>BRUFORD, M. W.</au><au>COYNE, M. S.</au><au>EBANKS-PETRIE, G.</au><au>FORMIA, A.</au><au>MEYLAN, P. A.</au><au>MEYLAN, A. B.</au><au>GODLEY, B. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turtle groups or turtle soup: dispersal patterns of hawksbill turtles in the Caribbean</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2009-12</date><risdate>2009</risdate><volume>18</volume><issue>23</issue><spage>4841</spage><epage>4853</epage><pages>4841-4853</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Despite intense interest in conservation of marine turtles, spatial ecology during the oceanic juvenile phase remains relatively unknown. Here, we used mixed stock analysis and examination of oceanic drift to elucidate movements of hawksbill turtles (Eretmochelys imbricata) and address management implications within the Caribbean. Among samples collected from 92 neritic juvenile hawksbills in the Cayman Islands we detected 11 mtDNA control region haplotypes. To estimate contributions to the aggregation, we performed ‘many‐to‐many’ mixed stock analysis, incorporating published hawksbill genetic and population data. The Cayman Islands aggregation represents a diverse mixed stock: potentially contributing source rookeries spanned the Caribbean basin, delineating a scale of recruitment of 200–2500 km. As hawksbills undergo an extended phase of oceanic dispersal, ocean currents may drive patterns of genetic diversity observed on foraging aggregations. Therefore, using high‐resolution Aviso ocean current data, we modelled movement of particles representing passively drifting oceanic juvenile hawksbills. Putative distribution patterns varied markedly by origin: particles from many rookeries were broadly distributed across the region, while others would appear to become entrained in local gyres. Overall, we detected a significant correlation between genetic profiles of foraging aggregations and patterns of particle distribution produced by a hatchling drift model (Mantel test, r = 0.77, P &lt; 0.001; linear regression, r = 0.83, P &lt; 0.001). Our results indicate that although there is a high degree of mixing across the Caribbean (a ‘turtle soup’), current patterns play a substantial role in determining genetic structure of foraging aggregations (forming turtle groups). Thus, for marine turtles and other widely distributed marine species, integration of genetic and oceanographic data may enhance understanding of population connectivity and management requirements.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>19889039</pmid><doi>10.1111/j.1365-294X.2009.04403.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2009-12, Vol.18 (23), p.4841-4853
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_miscellaneous_734239613
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Caribbean Region
conservation genetics
Conservation of Natural Resources
Dispersal
DNA, Mitochondrial - genetics
Genetic Variation
Genetics, Population
Geography
Habitats
Haplotypes
hawksbill
marine turtle
migratory species
mixed stock
Models, Biological
ocean currents
Reptiles & amphibians
Sequence Analysis, DNA
Turtles - genetics
Water Movements
title Turtle groups or turtle soup: dispersal patterns of hawksbill turtles in the Caribbean
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turtle%20groups%20or%20turtle%20soup:%20dispersal%20patterns%20of%20hawksbill%20turtles%20in%20the%20Caribbean&rft.jtitle=Molecular%20ecology&rft.au=BLUMENTHAL,%20J.%20M.&rft.date=2009-12&rft.volume=18&rft.issue=23&rft.spage=4841&rft.epage=4853&rft.pages=4841-4853&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/j.1365-294X.2009.04403.x&rft_dat=%3Cproquest_cross%3E1903114121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210698722&rft_id=info:pmid/19889039&rfr_iscdi=true