Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling

Choline is an essential anabolic substrate for the synthesis of phospholipids. Choline kinase phosphorylates choline to phosphocholine that serves as a precursor for the production of phosphatidylcholine, the major phospholipid constituent of membranes and substrate for the synthesis of lipid signal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2010-01, Vol.29 (1), p.139-149
Hauptverfasser: Yalcin, A, Clem, B, Makoni, S, Clem, A, Nelson, K, Thornburg, J, Siow, D, Lane, A N, Brock, S E, Goswami, U, Eaton, J W, Telang, S, Chesney, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue 1
container_start_page 139
container_title Oncogene
container_volume 29
creator Yalcin, A
Clem, B
Makoni, S
Clem, A
Nelson, K
Thornburg, J
Siow, D
Lane, A N
Brock, S E
Goswami, U
Eaton, J W
Telang, S
Chesney, J
description Choline is an essential anabolic substrate for the synthesis of phospholipids. Choline kinase phosphorylates choline to phosphocholine that serves as a precursor for the production of phosphatidylcholine, the major phospholipid constituent of membranes and substrate for the synthesis of lipid signaling molecules. Nuclear magnetic resonance (NMR)-based metabolomic studies of human tumors have identified a marked increase in the intracellular concentration of phosphocholine relative to normal tissues. We postulated that the observed intracellular pooling of phosphocholine may be required to sustain the production of the pleiotropic lipid second messenger, phosphatidic acid. Phosphatidic acid is generated from the cleavage of phosphatidylcholine by phospholipase D2 and is a key activator of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/AKT survival signaling pathways. In this study we show that the steady-state concentration of phosphocholine is increased by the ectopic expression of oncogenic H-Ras V12 in immortalized human bronchial epithelial cells. We then find that small interfering RNA (siRNA) silencing of choline kinase expression in transformed HeLa cells completely abrogates the high concentration of phosphocholine, which in turn decreases phosphatidylcholine, phosphatidic acid and signaling through the MAPK and PI3K/AKT pathways. This simultaneous reduction in survival signaling markedly decreases the anchorage-independent survival of HeLa cells in soft agar and in athymic mice. Last, we confirm the relative importance of phosphatidic acid for this pro-survival effect as phosphatidic acid supplementation fully restores MAPK signaling and partially rescues HeLa cells from choline kinase inhibition. Taken together, these data indicate that the pooling of phosphocholine in cancer cells may be required to provide a ready supply of phosphatidic acid necessary for the feed-forward amplification of cancer survival signaling pathways.
doi_str_mv 10.1038/onc.2009.317
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_734222976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A216631149</galeid><sourcerecordid>A216631149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-ad4d0e38146bc3a325f1c274c89735bc4b6fcf969cdb3d448cfdaf56f7ab95dc3</originalsourceid><addsrcrecordid>eNp90t1r1TAYB-AgijtO77yWoqg39izfaS4PQ904EwfOOyGk-TjLbJPZtML-e1N62NgYkotC-rxv3vRXAF4juEaQNEcpmjWGUK4JEk_AClHBa8YkfQpWUDJYS0zwAXiR8xWEUEiIn4MDJBvGKEEr8OuH65wZw19XhXgZ2jCGFKvkK3OZuhBd9TtEnV2VQz91o44uTbm7qfQ4ujjp0eXq2-Z8W-loq_NTsj3abC-K3UVdincvwTOvu-xe7Z-H4OeXzxfHJ_XZ96-nx5uz2rBGjLW21EJHGkR5a4gmmHlksKCmkYKw1tCWe-Mll8a2xFLaGG-1Z9wL3UpmDTkEH5e-10P6M7k8qj5k47pumVcJQjHGUvAiP_xXYkRg00hY4NsH8CpNQ7lWMbj0g4jLgt4taKc7p0L0aRy0mTuqDUacE4TorNaPqLKs64NJ0flQ9u8VfFoKzJByHpxX10Po9XCjEFRz5qpkrubMVcm88Df7Uae2d_YO70Mu4P0e6Gx05wcdTci3DpcfpHzzuVG9uFxexZ0b7u786MH_ANVEwU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227340169</pqid></control><display><type>article</type><title>Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yalcin, A ; Clem, B ; Makoni, S ; Clem, A ; Nelson, K ; Thornburg, J ; Siow, D ; Lane, A N ; Brock, S E ; Goswami, U ; Eaton, J W ; Telang, S ; Chesney, J</creator><creatorcontrib>Yalcin, A ; Clem, B ; Makoni, S ; Clem, A ; Nelson, K ; Thornburg, J ; Siow, D ; Lane, A N ; Brock, S E ; Goswami, U ; Eaton, J W ; Telang, S ; Chesney, J</creatorcontrib><description>Choline is an essential anabolic substrate for the synthesis of phospholipids. Choline kinase phosphorylates choline to phosphocholine that serves as a precursor for the production of phosphatidylcholine, the major phospholipid constituent of membranes and substrate for the synthesis of lipid signaling molecules. Nuclear magnetic resonance (NMR)-based metabolomic studies of human tumors have identified a marked increase in the intracellular concentration of phosphocholine relative to normal tissues. We postulated that the observed intracellular pooling of phosphocholine may be required to sustain the production of the pleiotropic lipid second messenger, phosphatidic acid. Phosphatidic acid is generated from the cleavage of phosphatidylcholine by phospholipase D2 and is a key activator of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/AKT survival signaling pathways. In this study we show that the steady-state concentration of phosphocholine is increased by the ectopic expression of oncogenic H-Ras V12 in immortalized human bronchial epithelial cells. We then find that small interfering RNA (siRNA) silencing of choline kinase expression in transformed HeLa cells completely abrogates the high concentration of phosphocholine, which in turn decreases phosphatidylcholine, phosphatidic acid and signaling through the MAPK and PI3K/AKT pathways. This simultaneous reduction in survival signaling markedly decreases the anchorage-independent survival of HeLa cells in soft agar and in athymic mice. Last, we confirm the relative importance of phosphatidic acid for this pro-survival effect as phosphatidic acid supplementation fully restores MAPK signaling and partially rescues HeLa cells from choline kinase inhibition. Taken together, these data indicate that the pooling of phosphocholine in cancer cells may be required to provide a ready supply of phosphatidic acid necessary for the feed-forward amplification of cancer survival signaling pathways.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2009.317</identifier><identifier>PMID: 19855431</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Apoptosis ; Biochemistry ; Biological and medical sciences ; Blotting, Western ; Cancer ; Care and treatment ; Cell Biology ; Cell Line, Transformed ; Cell physiology ; Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes ; Cellular signal transduction ; Choline Kinase - genetics ; Choline Kinase - metabolism ; Enzyme inhibitors ; Female ; Fundamental and applied biological sciences. Psychology ; Genetic aspects ; Genetics ; Health aspects ; HeLa Cells ; Human Genetics ; Humans ; Internal Medicine ; Lipids ; Magnetic Resonance Spectroscopy ; Medicine ; Medicine &amp; Public Health ; Mice ; Mice, Nude ; Mitogen-Activated Protein Kinases - metabolism ; Molecular and cellular biology ; Neoplasms, Experimental - genetics ; Neoplasms, Experimental - metabolism ; Neoplasms, Experimental - pathology ; Oncology ; original-article ; Phosphatidic Acids - metabolism ; Phosphatidylcholines - metabolism ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylcholine - metabolism ; Physiological aspects ; Protein kinases ; Proto-Oncogene Proteins c-akt - metabolism ; ras Proteins - genetics ; ras Proteins - metabolism ; RNA Interference ; Signal Transduction ; Survival Analysis ; Transplantation, Heterologous ; Tumor Burden</subject><ispartof>Oncogene, 2010-01, Vol.29 (1), p.139-149</ispartof><rights>Macmillan Publishers Limited 2010</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 7, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-ad4d0e38146bc3a325f1c274c89735bc4b6fcf969cdb3d448cfdaf56f7ab95dc3</citedby><cites>FETCH-LOGICAL-c587t-ad4d0e38146bc3a325f1c274c89735bc4b6fcf969cdb3d448cfdaf56f7ab95dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2009.317$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2009.317$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22323257$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19855431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yalcin, A</creatorcontrib><creatorcontrib>Clem, B</creatorcontrib><creatorcontrib>Makoni, S</creatorcontrib><creatorcontrib>Clem, A</creatorcontrib><creatorcontrib>Nelson, K</creatorcontrib><creatorcontrib>Thornburg, J</creatorcontrib><creatorcontrib>Siow, D</creatorcontrib><creatorcontrib>Lane, A N</creatorcontrib><creatorcontrib>Brock, S E</creatorcontrib><creatorcontrib>Goswami, U</creatorcontrib><creatorcontrib>Eaton, J W</creatorcontrib><creatorcontrib>Telang, S</creatorcontrib><creatorcontrib>Chesney, J</creatorcontrib><title>Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Choline is an essential anabolic substrate for the synthesis of phospholipids. Choline kinase phosphorylates choline to phosphocholine that serves as a precursor for the production of phosphatidylcholine, the major phospholipid constituent of membranes and substrate for the synthesis of lipid signaling molecules. Nuclear magnetic resonance (NMR)-based metabolomic studies of human tumors have identified a marked increase in the intracellular concentration of phosphocholine relative to normal tissues. We postulated that the observed intracellular pooling of phosphocholine may be required to sustain the production of the pleiotropic lipid second messenger, phosphatidic acid. Phosphatidic acid is generated from the cleavage of phosphatidylcholine by phospholipase D2 and is a key activator of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/AKT survival signaling pathways. In this study we show that the steady-state concentration of phosphocholine is increased by the ectopic expression of oncogenic H-Ras V12 in immortalized human bronchial epithelial cells. We then find that small interfering RNA (siRNA) silencing of choline kinase expression in transformed HeLa cells completely abrogates the high concentration of phosphocholine, which in turn decreases phosphatidylcholine, phosphatidic acid and signaling through the MAPK and PI3K/AKT pathways. This simultaneous reduction in survival signaling markedly decreases the anchorage-independent survival of HeLa cells in soft agar and in athymic mice. Last, we confirm the relative importance of phosphatidic acid for this pro-survival effect as phosphatidic acid supplementation fully restores MAPK signaling and partially rescues HeLa cells from choline kinase inhibition. Taken together, these data indicate that the pooling of phosphocholine in cancer cells may be required to provide a ready supply of phosphatidic acid necessary for the feed-forward amplification of cancer survival signaling pathways.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Cell Line, Transformed</subject><subject>Cell physiology</subject><subject>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</subject><subject>Cellular signal transduction</subject><subject>Choline Kinase - genetics</subject><subject>Choline Kinase - metabolism</subject><subject>Enzyme inhibitors</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Health aspects</subject><subject>HeLa Cells</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Lipids</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Neoplasms, Experimental - genetics</subject><subject>Neoplasms, Experimental - metabolism</subject><subject>Neoplasms, Experimental - pathology</subject><subject>Oncology</subject><subject>original-article</subject><subject>Phosphatidic Acids - metabolism</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylcholine - metabolism</subject><subject>Physiological aspects</subject><subject>Protein kinases</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>ras Proteins - genetics</subject><subject>ras Proteins - metabolism</subject><subject>RNA Interference</subject><subject>Signal Transduction</subject><subject>Survival Analysis</subject><subject>Transplantation, Heterologous</subject><subject>Tumor Burden</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90t1r1TAYB-AgijtO77yWoqg39izfaS4PQ904EwfOOyGk-TjLbJPZtML-e1N62NgYkotC-rxv3vRXAF4juEaQNEcpmjWGUK4JEk_AClHBa8YkfQpWUDJYS0zwAXiR8xWEUEiIn4MDJBvGKEEr8OuH65wZw19XhXgZ2jCGFKvkK3OZuhBd9TtEnV2VQz91o44uTbm7qfQ4ujjp0eXq2-Z8W-loq_NTsj3abC-K3UVdincvwTOvu-xe7Z-H4OeXzxfHJ_XZ96-nx5uz2rBGjLW21EJHGkR5a4gmmHlksKCmkYKw1tCWe-Mll8a2xFLaGG-1Z9wL3UpmDTkEH5e-10P6M7k8qj5k47pumVcJQjHGUvAiP_xXYkRg00hY4NsH8CpNQ7lWMbj0g4jLgt4taKc7p0L0aRy0mTuqDUacE4TorNaPqLKs64NJ0flQ9u8VfFoKzJByHpxX10Po9XCjEFRz5qpkrubMVcm88Df7Uae2d_YO70Mu4P0e6Gx05wcdTci3DpcfpHzzuVG9uFxexZ0b7u786MH_ANVEwU0</recordid><startdate>20100107</startdate><enddate>20100107</enddate><creator>Yalcin, A</creator><creator>Clem, B</creator><creator>Makoni, S</creator><creator>Clem, A</creator><creator>Nelson, K</creator><creator>Thornburg, J</creator><creator>Siow, D</creator><creator>Lane, A N</creator><creator>Brock, S E</creator><creator>Goswami, U</creator><creator>Eaton, J W</creator><creator>Telang, S</creator><creator>Chesney, J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20100107</creationdate><title>Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling</title><author>Yalcin, A ; Clem, B ; Makoni, S ; Clem, A ; Nelson, K ; Thornburg, J ; Siow, D ; Lane, A N ; Brock, S E ; Goswami, U ; Eaton, J W ; Telang, S ; Chesney, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-ad4d0e38146bc3a325f1c274c89735bc4b6fcf969cdb3d448cfdaf56f7ab95dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Cell Line, Transformed</topic><topic>Cell physiology</topic><topic>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</topic><topic>Cellular signal transduction</topic><topic>Choline Kinase - genetics</topic><topic>Choline Kinase - metabolism</topic><topic>Enzyme inhibitors</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Health aspects</topic><topic>HeLa Cells</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Lipids</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Neoplasms, Experimental - genetics</topic><topic>Neoplasms, Experimental - metabolism</topic><topic>Neoplasms, Experimental - pathology</topic><topic>Oncology</topic><topic>original-article</topic><topic>Phosphatidic Acids - metabolism</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylcholine - metabolism</topic><topic>Physiological aspects</topic><topic>Protein kinases</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>ras Proteins - genetics</topic><topic>ras Proteins - metabolism</topic><topic>RNA Interference</topic><topic>Signal Transduction</topic><topic>Survival Analysis</topic><topic>Transplantation, Heterologous</topic><topic>Tumor Burden</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yalcin, A</creatorcontrib><creatorcontrib>Clem, B</creatorcontrib><creatorcontrib>Makoni, S</creatorcontrib><creatorcontrib>Clem, A</creatorcontrib><creatorcontrib>Nelson, K</creatorcontrib><creatorcontrib>Thornburg, J</creatorcontrib><creatorcontrib>Siow, D</creatorcontrib><creatorcontrib>Lane, A N</creatorcontrib><creatorcontrib>Brock, S E</creatorcontrib><creatorcontrib>Goswami, U</creatorcontrib><creatorcontrib>Eaton, J W</creatorcontrib><creatorcontrib>Telang, S</creatorcontrib><creatorcontrib>Chesney, J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yalcin, A</au><au>Clem, B</au><au>Makoni, S</au><au>Clem, A</au><au>Nelson, K</au><au>Thornburg, J</au><au>Siow, D</au><au>Lane, A N</au><au>Brock, S E</au><au>Goswami, U</au><au>Eaton, J W</au><au>Telang, S</au><au>Chesney, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2010-01-07</date><risdate>2010</risdate><volume>29</volume><issue>1</issue><spage>139</spage><epage>149</epage><pages>139-149</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Choline is an essential anabolic substrate for the synthesis of phospholipids. Choline kinase phosphorylates choline to phosphocholine that serves as a precursor for the production of phosphatidylcholine, the major phospholipid constituent of membranes and substrate for the synthesis of lipid signaling molecules. Nuclear magnetic resonance (NMR)-based metabolomic studies of human tumors have identified a marked increase in the intracellular concentration of phosphocholine relative to normal tissues. We postulated that the observed intracellular pooling of phosphocholine may be required to sustain the production of the pleiotropic lipid second messenger, phosphatidic acid. Phosphatidic acid is generated from the cleavage of phosphatidylcholine by phospholipase D2 and is a key activator of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/AKT survival signaling pathways. In this study we show that the steady-state concentration of phosphocholine is increased by the ectopic expression of oncogenic H-Ras V12 in immortalized human bronchial epithelial cells. We then find that small interfering RNA (siRNA) silencing of choline kinase expression in transformed HeLa cells completely abrogates the high concentration of phosphocholine, which in turn decreases phosphatidylcholine, phosphatidic acid and signaling through the MAPK and PI3K/AKT pathways. This simultaneous reduction in survival signaling markedly decreases the anchorage-independent survival of HeLa cells in soft agar and in athymic mice. Last, we confirm the relative importance of phosphatidic acid for this pro-survival effect as phosphatidic acid supplementation fully restores MAPK signaling and partially rescues HeLa cells from choline kinase inhibition. Taken together, these data indicate that the pooling of phosphocholine in cancer cells may be required to provide a ready supply of phosphatidic acid necessary for the feed-forward amplification of cancer survival signaling pathways.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19855431</pmid><doi>10.1038/onc.2009.317</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2010-01, Vol.29 (1), p.139-149
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_miscellaneous_734222976
source MEDLINE; SpringerLink Journals; Nature Journals Online; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Apoptosis
Biochemistry
Biological and medical sciences
Blotting, Western
Cancer
Care and treatment
Cell Biology
Cell Line, Transformed
Cell physiology
Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes
Cellular signal transduction
Choline Kinase - genetics
Choline Kinase - metabolism
Enzyme inhibitors
Female
Fundamental and applied biological sciences. Psychology
Genetic aspects
Genetics
Health aspects
HeLa Cells
Human Genetics
Humans
Internal Medicine
Lipids
Magnetic Resonance Spectroscopy
Medicine
Medicine & Public Health
Mice
Mice, Nude
Mitogen-Activated Protein Kinases - metabolism
Molecular and cellular biology
Neoplasms, Experimental - genetics
Neoplasms, Experimental - metabolism
Neoplasms, Experimental - pathology
Oncology
original-article
Phosphatidic Acids - metabolism
Phosphatidylcholines - metabolism
Phosphatidylinositol 3-Kinases - metabolism
Phosphorylcholine - metabolism
Physiological aspects
Protein kinases
Proto-Oncogene Proteins c-akt - metabolism
ras Proteins - genetics
ras Proteins - metabolism
RNA Interference
Signal Transduction
Survival Analysis
Transplantation, Heterologous
Tumor Burden
title Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20inhibition%20of%20choline%20kinase%20simultaneously%20attenuates%20MAPK%20and%20PI3K/AKT%20signaling&rft.jtitle=Oncogene&rft.au=Yalcin,%20A&rft.date=2010-01-07&rft.volume=29&rft.issue=1&rft.spage=139&rft.epage=149&rft.pages=139-149&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2009.317&rft_dat=%3Cgale_proqu%3EA216631149%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=227340169&rft_id=info:pmid/19855431&rft_galeid=A216631149&rfr_iscdi=true