Prediction of Photoperiodic Regulators from Quantitative Gene Circuit Models

Photoperiod sensors allow physiological adaptation to the changing seasons. The prevalent hypothesis is that day length perception is mediated through coupling of an endogenous rhythm with an external light signal. Sufficient molecular data are available to test this quantitatively in plants, though...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2009-12, Vol.139 (6), p.1170-1179
Hauptverfasser: Salazar, José Domingo, Saithong, Treenut, Brown, Paul E., Foreman, Julia, Locke, James C.W., Halliday, Karen J., Carré, Isabelle A., Rand, David A., Millar, Andrew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1179
container_issue 6
container_start_page 1170
container_title Cell
container_volume 139
creator Salazar, José Domingo
Saithong, Treenut
Brown, Paul E.
Foreman, Julia
Locke, James C.W.
Halliday, Karen J.
Carré, Isabelle A.
Rand, David A.
Millar, Andrew J.
description Photoperiod sensors allow physiological adaptation to the changing seasons. The prevalent hypothesis is that day length perception is mediated through coupling of an endogenous rhythm with an external light signal. Sufficient molecular data are available to test this quantitatively in plants, though not yet in mammals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their light-sensitive proteins are thought to form an external coincidence sensor. Here, we model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, our models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modeling makes this complexity explicit and may thus contribute to crop improvement.
doi_str_mv 10.1016/j.cell.2009.11.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734191277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867409014871</els_id><sourcerecordid>734191277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-9e84ae60c3ee9215bc88ca925dd35f9d72c5eee8fb45e4731c366f014764e2a93</originalsourceid><addsrcrecordid>eNp9kEtr3DAURkVpaSaPP9BF8Kpd2dWVJcuCbMLQJIUJeZCshUa-bjXY1kSSA_n3sTvTLGcluDrnWxxCvgEtgEL1c1NY7LqCUaoKgIIy9YksgCqZc5DsM1lMHyyvK8mPyHGMG0ppLYT4So4mhYqaqgVZ3QdsnE3OD5lvs_u_PvktBuenY_aIf8bOJB9i1gbfZw-jGZJLJrlXzK5xwGzpgh1dym59g108JV9a00U8278n5Pnq19PyJl_dXf9eXq5yy1WVcoU1N1hRWyIqBmJt69oaxUTTlKJVjWRWIGLdrrlALkuwZVW1FLisODKjyhPyY7e7Df5lxJh07-Lcwgzox6hlyUEBk3Iivx8kGYCkwOZJtgNt8DEGbPU2uN6ENw1Uz7X1Rs-enmtrAE3_Sef79XHdY_Oh_M87ARc7YIqDrw6DjtbhYKfkAW3SjXeH9t8BzR-QyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21170129</pqid></control><display><type>article</type><title>Prediction of Photoperiodic Regulators from Quantitative Gene Circuit Models</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Salazar, José Domingo ; Saithong, Treenut ; Brown, Paul E. ; Foreman, Julia ; Locke, James C.W. ; Halliday, Karen J. ; Carré, Isabelle A. ; Rand, David A. ; Millar, Andrew J.</creator><creatorcontrib>Salazar, José Domingo ; Saithong, Treenut ; Brown, Paul E. ; Foreman, Julia ; Locke, James C.W. ; Halliday, Karen J. ; Carré, Isabelle A. ; Rand, David A. ; Millar, Andrew J.</creatorcontrib><description>Photoperiod sensors allow physiological adaptation to the changing seasons. The prevalent hypothesis is that day length perception is mediated through coupling of an endogenous rhythm with an external light signal. Sufficient molecular data are available to test this quantitatively in plants, though not yet in mammals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their light-sensitive proteins are thought to form an external coincidence sensor. Here, we model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, our models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modeling makes this complexity explicit and may thus contribute to crop improvement.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2009.11.029</identifier><identifier>PMID: 20005809</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Biological Clocks ; DNA-Binding Proteins - genetics ; Flowers - physiology ; Gene Expression Regulation, Plant ; Gene Regulatory Networks ; Models, Genetic ; Photoperiod ; SIGNALING ; SYSBIO ; Transcription Factors - genetics</subject><ispartof>Cell, 2009-12, Vol.139 (6), p.1170-1179</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-9e84ae60c3ee9215bc88ca925dd35f9d72c5eee8fb45e4731c366f014764e2a93</citedby><cites>FETCH-LOGICAL-c496t-9e84ae60c3ee9215bc88ca925dd35f9d72c5eee8fb45e4731c366f014764e2a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2009.11.029$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20005809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salazar, José Domingo</creatorcontrib><creatorcontrib>Saithong, Treenut</creatorcontrib><creatorcontrib>Brown, Paul E.</creatorcontrib><creatorcontrib>Foreman, Julia</creatorcontrib><creatorcontrib>Locke, James C.W.</creatorcontrib><creatorcontrib>Halliday, Karen J.</creatorcontrib><creatorcontrib>Carré, Isabelle A.</creatorcontrib><creatorcontrib>Rand, David A.</creatorcontrib><creatorcontrib>Millar, Andrew J.</creatorcontrib><title>Prediction of Photoperiodic Regulators from Quantitative Gene Circuit Models</title><title>Cell</title><addtitle>Cell</addtitle><description>Photoperiod sensors allow physiological adaptation to the changing seasons. The prevalent hypothesis is that day length perception is mediated through coupling of an endogenous rhythm with an external light signal. Sufficient molecular data are available to test this quantitatively in plants, though not yet in mammals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their light-sensitive proteins are thought to form an external coincidence sensor. Here, we model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, our models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modeling makes this complexity explicit and may thus contribute to crop improvement.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Biological Clocks</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Flowers - physiology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Regulatory Networks</subject><subject>Models, Genetic</subject><subject>Photoperiod</subject><subject>SIGNALING</subject><subject>SYSBIO</subject><subject>Transcription Factors - genetics</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtr3DAURkVpaSaPP9BF8Kpd2dWVJcuCbMLQJIUJeZCshUa-bjXY1kSSA_n3sTvTLGcluDrnWxxCvgEtgEL1c1NY7LqCUaoKgIIy9YksgCqZc5DsM1lMHyyvK8mPyHGMG0ppLYT4So4mhYqaqgVZ3QdsnE3OD5lvs_u_PvktBuenY_aIf8bOJB9i1gbfZw-jGZJLJrlXzK5xwGzpgh1dym59g108JV9a00U8278n5Pnq19PyJl_dXf9eXq5yy1WVcoU1N1hRWyIqBmJt69oaxUTTlKJVjWRWIGLdrrlALkuwZVW1FLisODKjyhPyY7e7Df5lxJh07-Lcwgzox6hlyUEBk3Iivx8kGYCkwOZJtgNt8DEGbPU2uN6ENw1Uz7X1Rs-enmtrAE3_Sef79XHdY_Oh_M87ARc7YIqDrw6DjtbhYKfkAW3SjXeH9t8BzR-QyQ</recordid><startdate>20091211</startdate><enddate>20091211</enddate><creator>Salazar, José Domingo</creator><creator>Saithong, Treenut</creator><creator>Brown, Paul E.</creator><creator>Foreman, Julia</creator><creator>Locke, James C.W.</creator><creator>Halliday, Karen J.</creator><creator>Carré, Isabelle A.</creator><creator>Rand, David A.</creator><creator>Millar, Andrew J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20091211</creationdate><title>Prediction of Photoperiodic Regulators from Quantitative Gene Circuit Models</title><author>Salazar, José Domingo ; Saithong, Treenut ; Brown, Paul E. ; Foreman, Julia ; Locke, James C.W. ; Halliday, Karen J. ; Carré, Isabelle A. ; Rand, David A. ; Millar, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-9e84ae60c3ee9215bc88ca925dd35f9d72c5eee8fb45e4731c366f014764e2a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Biological Clocks</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Flowers - physiology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Regulatory Networks</topic><topic>Models, Genetic</topic><topic>Photoperiod</topic><topic>SIGNALING</topic><topic>SYSBIO</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salazar, José Domingo</creatorcontrib><creatorcontrib>Saithong, Treenut</creatorcontrib><creatorcontrib>Brown, Paul E.</creatorcontrib><creatorcontrib>Foreman, Julia</creatorcontrib><creatorcontrib>Locke, James C.W.</creatorcontrib><creatorcontrib>Halliday, Karen J.</creatorcontrib><creatorcontrib>Carré, Isabelle A.</creatorcontrib><creatorcontrib>Rand, David A.</creatorcontrib><creatorcontrib>Millar, Andrew J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salazar, José Domingo</au><au>Saithong, Treenut</au><au>Brown, Paul E.</au><au>Foreman, Julia</au><au>Locke, James C.W.</au><au>Halliday, Karen J.</au><au>Carré, Isabelle A.</au><au>Rand, David A.</au><au>Millar, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Photoperiodic Regulators from Quantitative Gene Circuit Models</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2009-12-11</date><risdate>2009</risdate><volume>139</volume><issue>6</issue><spage>1170</spage><epage>1179</epage><pages>1170-1179</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Photoperiod sensors allow physiological adaptation to the changing seasons. The prevalent hypothesis is that day length perception is mediated through coupling of an endogenous rhythm with an external light signal. Sufficient molecular data are available to test this quantitatively in plants, though not yet in mammals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their light-sensitive proteins are thought to form an external coincidence sensor. Here, we model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, our models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modeling makes this complexity explicit and may thus contribute to crop improvement.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20005809</pmid><doi>10.1016/j.cell.2009.11.029</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2009-12, Vol.139 (6), p.1170-1179
issn 0092-8674
1097-4172
language eng
recordid cdi_proquest_miscellaneous_734191277
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals
subjects Arabidopsis
Arabidopsis - genetics
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Biological Clocks
DNA-Binding Proteins - genetics
Flowers - physiology
Gene Expression Regulation, Plant
Gene Regulatory Networks
Models, Genetic
Photoperiod
SIGNALING
SYSBIO
Transcription Factors - genetics
title Prediction of Photoperiodic Regulators from Quantitative Gene Circuit Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Photoperiodic%20Regulators%20from%20Quantitative%20Gene%20Circuit%20Models&rft.jtitle=Cell&rft.au=Salazar,%20Jos%C3%A9%20Domingo&rft.date=2009-12-11&rft.volume=139&rft.issue=6&rft.spage=1170&rft.epage=1179&rft.pages=1170-1179&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2009.11.029&rft_dat=%3Cproquest_cross%3E734191277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21170129&rft_id=info:pmid/20005809&rft_els_id=S0092867409014871&rfr_iscdi=true