Prediction of Photoperiodic Regulators from Quantitative Gene Circuit Models
Photoperiod sensors allow physiological adaptation to the changing seasons. The prevalent hypothesis is that day length perception is mediated through coupling of an endogenous rhythm with an external light signal. Sufficient molecular data are available to test this quantitatively in plants, though...
Gespeichert in:
Veröffentlicht in: | Cell 2009-12, Vol.139 (6), p.1170-1179 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1179 |
---|---|
container_issue | 6 |
container_start_page | 1170 |
container_title | Cell |
container_volume | 139 |
creator | Salazar, José Domingo Saithong, Treenut Brown, Paul E. Foreman, Julia Locke, James C.W. Halliday, Karen J. Carré, Isabelle A. Rand, David A. Millar, Andrew J. |
description | Photoperiod sensors allow physiological adaptation to the changing seasons. The prevalent hypothesis is that day length perception is mediated through coupling of an endogenous rhythm with an external light signal. Sufficient molecular data are available to test this quantitatively in plants, though not yet in mammals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their light-sensitive proteins are thought to form an external coincidence sensor. Here, we model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, our models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modeling makes this complexity explicit and may thus contribute to crop improvement. |
doi_str_mv | 10.1016/j.cell.2009.11.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734191277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867409014871</els_id><sourcerecordid>734191277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-9e84ae60c3ee9215bc88ca925dd35f9d72c5eee8fb45e4731c366f014764e2a93</originalsourceid><addsrcrecordid>eNp9kEtr3DAURkVpaSaPP9BF8Kpd2dWVJcuCbMLQJIUJeZCshUa-bjXY1kSSA_n3sTvTLGcluDrnWxxCvgEtgEL1c1NY7LqCUaoKgIIy9YksgCqZc5DsM1lMHyyvK8mPyHGMG0ppLYT4So4mhYqaqgVZ3QdsnE3OD5lvs_u_PvktBuenY_aIf8bOJB9i1gbfZw-jGZJLJrlXzK5xwGzpgh1dym59g108JV9a00U8278n5Pnq19PyJl_dXf9eXq5yy1WVcoU1N1hRWyIqBmJt69oaxUTTlKJVjWRWIGLdrrlALkuwZVW1FLisODKjyhPyY7e7Df5lxJh07-Lcwgzox6hlyUEBk3Iivx8kGYCkwOZJtgNt8DEGbPU2uN6ENw1Uz7X1Rs-enmtrAE3_Sef79XHdY_Oh_M87ARc7YIqDrw6DjtbhYKfkAW3SjXeH9t8BzR-QyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21170129</pqid></control><display><type>article</type><title>Prediction of Photoperiodic Regulators from Quantitative Gene Circuit Models</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Salazar, José Domingo ; Saithong, Treenut ; Brown, Paul E. ; Foreman, Julia ; Locke, James C.W. ; Halliday, Karen J. ; Carré, Isabelle A. ; Rand, David A. ; Millar, Andrew J.</creator><creatorcontrib>Salazar, José Domingo ; Saithong, Treenut ; Brown, Paul E. ; Foreman, Julia ; Locke, James C.W. ; Halliday, Karen J. ; Carré, Isabelle A. ; Rand, David A. ; Millar, Andrew J.</creatorcontrib><description>Photoperiod sensors allow physiological adaptation to the changing seasons. The prevalent hypothesis is that day length perception is mediated through coupling of an endogenous rhythm with an external light signal. Sufficient molecular data are available to test this quantitatively in plants, though not yet in mammals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their light-sensitive proteins are thought to form an external coincidence sensor. Here, we model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, our models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modeling makes this complexity explicit and may thus contribute to crop improvement.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2009.11.029</identifier><identifier>PMID: 20005809</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Biological Clocks ; DNA-Binding Proteins - genetics ; Flowers - physiology ; Gene Expression Regulation, Plant ; Gene Regulatory Networks ; Models, Genetic ; Photoperiod ; SIGNALING ; SYSBIO ; Transcription Factors - genetics</subject><ispartof>Cell, 2009-12, Vol.139 (6), p.1170-1179</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-9e84ae60c3ee9215bc88ca925dd35f9d72c5eee8fb45e4731c366f014764e2a93</citedby><cites>FETCH-LOGICAL-c496t-9e84ae60c3ee9215bc88ca925dd35f9d72c5eee8fb45e4731c366f014764e2a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2009.11.029$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20005809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salazar, José Domingo</creatorcontrib><creatorcontrib>Saithong, Treenut</creatorcontrib><creatorcontrib>Brown, Paul E.</creatorcontrib><creatorcontrib>Foreman, Julia</creatorcontrib><creatorcontrib>Locke, James C.W.</creatorcontrib><creatorcontrib>Halliday, Karen J.</creatorcontrib><creatorcontrib>Carré, Isabelle A.</creatorcontrib><creatorcontrib>Rand, David A.</creatorcontrib><creatorcontrib>Millar, Andrew J.</creatorcontrib><title>Prediction of Photoperiodic Regulators from Quantitative Gene Circuit Models</title><title>Cell</title><addtitle>Cell</addtitle><description>Photoperiod sensors allow physiological adaptation to the changing seasons. The prevalent hypothesis is that day length perception is mediated through coupling of an endogenous rhythm with an external light signal. Sufficient molecular data are available to test this quantitatively in plants, though not yet in mammals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their light-sensitive proteins are thought to form an external coincidence sensor. Here, we model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, our models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modeling makes this complexity explicit and may thus contribute to crop improvement.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Biological Clocks</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Flowers - physiology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Regulatory Networks</subject><subject>Models, Genetic</subject><subject>Photoperiod</subject><subject>SIGNALING</subject><subject>SYSBIO</subject><subject>Transcription Factors - genetics</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtr3DAURkVpaSaPP9BF8Kpd2dWVJcuCbMLQJIUJeZCshUa-bjXY1kSSA_n3sTvTLGcluDrnWxxCvgEtgEL1c1NY7LqCUaoKgIIy9YksgCqZc5DsM1lMHyyvK8mPyHGMG0ppLYT4So4mhYqaqgVZ3QdsnE3OD5lvs_u_PvktBuenY_aIf8bOJB9i1gbfZw-jGZJLJrlXzK5xwGzpgh1dym59g108JV9a00U8278n5Pnq19PyJl_dXf9eXq5yy1WVcoU1N1hRWyIqBmJt69oaxUTTlKJVjWRWIGLdrrlALkuwZVW1FLisODKjyhPyY7e7Df5lxJh07-Lcwgzox6hlyUEBk3Iivx8kGYCkwOZJtgNt8DEGbPU2uN6ENw1Uz7X1Rs-enmtrAE3_Sef79XHdY_Oh_M87ARc7YIqDrw6DjtbhYKfkAW3SjXeH9t8BzR-QyQ</recordid><startdate>20091211</startdate><enddate>20091211</enddate><creator>Salazar, José Domingo</creator><creator>Saithong, Treenut</creator><creator>Brown, Paul E.</creator><creator>Foreman, Julia</creator><creator>Locke, James C.W.</creator><creator>Halliday, Karen J.</creator><creator>Carré, Isabelle A.</creator><creator>Rand, David A.</creator><creator>Millar, Andrew J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20091211</creationdate><title>Prediction of Photoperiodic Regulators from Quantitative Gene Circuit Models</title><author>Salazar, José Domingo ; Saithong, Treenut ; Brown, Paul E. ; Foreman, Julia ; Locke, James C.W. ; Halliday, Karen J. ; Carré, Isabelle A. ; Rand, David A. ; Millar, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-9e84ae60c3ee9215bc88ca925dd35f9d72c5eee8fb45e4731c366f014764e2a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Biological Clocks</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Flowers - physiology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Regulatory Networks</topic><topic>Models, Genetic</topic><topic>Photoperiod</topic><topic>SIGNALING</topic><topic>SYSBIO</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salazar, José Domingo</creatorcontrib><creatorcontrib>Saithong, Treenut</creatorcontrib><creatorcontrib>Brown, Paul E.</creatorcontrib><creatorcontrib>Foreman, Julia</creatorcontrib><creatorcontrib>Locke, James C.W.</creatorcontrib><creatorcontrib>Halliday, Karen J.</creatorcontrib><creatorcontrib>Carré, Isabelle A.</creatorcontrib><creatorcontrib>Rand, David A.</creatorcontrib><creatorcontrib>Millar, Andrew J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salazar, José Domingo</au><au>Saithong, Treenut</au><au>Brown, Paul E.</au><au>Foreman, Julia</au><au>Locke, James C.W.</au><au>Halliday, Karen J.</au><au>Carré, Isabelle A.</au><au>Rand, David A.</au><au>Millar, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Photoperiodic Regulators from Quantitative Gene Circuit Models</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2009-12-11</date><risdate>2009</risdate><volume>139</volume><issue>6</issue><spage>1170</spage><epage>1179</epage><pages>1170-1179</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Photoperiod sensors allow physiological adaptation to the changing seasons. The prevalent hypothesis is that day length perception is mediated through coupling of an endogenous rhythm with an external light signal. Sufficient molecular data are available to test this quantitatively in plants, though not yet in mammals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their light-sensitive proteins are thought to form an external coincidence sensor. Here, we model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, our models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modeling makes this complexity explicit and may thus contribute to crop improvement.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20005809</pmid><doi>10.1016/j.cell.2009.11.029</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2009-12, Vol.139 (6), p.1170-1179 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_proquest_miscellaneous_734191277 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals |
subjects | Arabidopsis Arabidopsis - genetics Arabidopsis - physiology Arabidopsis Proteins - genetics Biological Clocks DNA-Binding Proteins - genetics Flowers - physiology Gene Expression Regulation, Plant Gene Regulatory Networks Models, Genetic Photoperiod SIGNALING SYSBIO Transcription Factors - genetics |
title | Prediction of Photoperiodic Regulators from Quantitative Gene Circuit Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Photoperiodic%20Regulators%20from%20Quantitative%20Gene%20Circuit%20Models&rft.jtitle=Cell&rft.au=Salazar,%20Jos%C3%A9%20Domingo&rft.date=2009-12-11&rft.volume=139&rft.issue=6&rft.spage=1170&rft.epage=1179&rft.pages=1170-1179&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2009.11.029&rft_dat=%3Cproquest_cross%3E734191277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21170129&rft_id=info:pmid/20005809&rft_els_id=S0092867409014871&rfr_iscdi=true |