The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene

Crosslinked ultrahigh molecular weight polyethylene (UHMWPE) has been recently approved by the Food and Drug Administration for use in orthopedic implants. The majority of commercially available UHMWPE orthopedic components are crosslinked using e‐beam or gamma radiation. The level of crosslinking i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research 2003-07, Vol.66A (1), p.146-154
Hauptverfasser: Baker, D. A., Bellare, A., Pruitt, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 1
container_start_page 146
container_title Journal of biomedical materials research
container_volume 66A
creator Baker, D. A.
Bellare, A.
Pruitt, L.
description Crosslinked ultrahigh molecular weight polyethylene (UHMWPE) has been recently approved by the Food and Drug Administration for use in orthopedic implants. The majority of commercially available UHMWPE orthopedic components are crosslinked using e‐beam or gamma radiation. The level of crosslinking is controlled with radiation dose and free radicals are eliminated through heat treatments to prevent long‐term degradation associated with chain scission or oxidation mechanisms. Laboratory studies have demonstrated a substantial improvement in the wear resistance of crosslinked UHMWPE. However, a concern about the resistance to fatigue damage remains in the clinical community, especially for tibial components that sustain high cyclic contact stresses. The objective of this study was to investigate both the initiation and propagation aspects of fatigue cracks in radiation crosslinked medical‐grade UHMWPE. This work evaluated three levels of radiation, which induced three crosslink densities, on the fatigue crack propagation and total fatigue life behavior. Both as‐received UHMWPE, as well as those that underwent an identical thermal history as the crosslinked UHMWPE were used as controls. Fractured crack propagation specimens were examined using scanning electron microscopy to elucidate fatigue fracture mechanisms. The results of this work indicated that a low crosslink density may optimize the fatigue resistance from both a crack initiation and propagation standpoint. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 66A: 146–154, 2003
doi_str_mv 10.1002/jbm.a.10606
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73418800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28031577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5856-b248a91e731e5161b21a94721ee4e24d6a00f0c6d572ebbbcd4b8159807988833</originalsourceid><addsrcrecordid>eNqNkk1z0zAQhj0MDC2FE3fGF7gwLlpZn0eagUKnfAwEOGpkeZ2ocWwjOQM58s9R4kBvhJNWu8_uSrtvlj0Gcg6E0Bc31frcJlMQcSc7Bc5pwbTgd3c200VJtTjJHsR4k2BBOL2fnQBVZckYnGa_5kvMsWnQjTHvm7zGRUDcWS70Mba-W_lukfddPiawsaNfbDDFrFvlvvOjT54UtF2dD6Ef7GK6B4w-jrZz-1J9GJf9gLV3xSLYGvOhb7c4Lrctdvgwu9fYNuKjw3mWfXn9aj57U1x_uHw7e3ldOK64KCrKlNWAsgTkIKCiYDWTFBAZUlYLS0hDnKi5pFhVlatZpYBrRaRWKn33LHs21U3v_L7BOJq1jw7b1nbYb6KRJQOlCDkKUq1Jmh38BygZ4cCOg4qUwKU8CoLSVCjCE_h8AvdbCtiYIfi1DVsDxOxUYZIqjDV7VST6yaHsplpjfcseZJCApwfARmfbJqTN-XjLMV0qSnejgYn74Vvc_qunubp496d5MeUkQeDPvzk2rIyQpeTm2_tLc8G-frz6PJubT-VvaG7fAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18926805</pqid></control><display><type>article</type><title>The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Baker, D. A. ; Bellare, A. ; Pruitt, L.</creator><creatorcontrib>Baker, D. A. ; Bellare, A. ; Pruitt, L.</creatorcontrib><description>Crosslinked ultrahigh molecular weight polyethylene (UHMWPE) has been recently approved by the Food and Drug Administration for use in orthopedic implants. The majority of commercially available UHMWPE orthopedic components are crosslinked using e‐beam or gamma radiation. The level of crosslinking is controlled with radiation dose and free radicals are eliminated through heat treatments to prevent long‐term degradation associated with chain scission or oxidation mechanisms. Laboratory studies have demonstrated a substantial improvement in the wear resistance of crosslinked UHMWPE. However, a concern about the resistance to fatigue damage remains in the clinical community, especially for tibial components that sustain high cyclic contact stresses. The objective of this study was to investigate both the initiation and propagation aspects of fatigue cracks in radiation crosslinked medical‐grade UHMWPE. This work evaluated three levels of radiation, which induced three crosslink densities, on the fatigue crack propagation and total fatigue life behavior. Both as‐received UHMWPE, as well as those that underwent an identical thermal history as the crosslinked UHMWPE were used as controls. Fractured crack propagation specimens were examined using scanning electron microscopy to elucidate fatigue fracture mechanisms. The results of this work indicated that a low crosslink density may optimize the fatigue resistance from both a crack initiation and propagation standpoint. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 66A: 146–154, 2003</description><identifier>ISSN: 1549-3296</identifier><identifier>ISSN: 0021-9304</identifier><identifier>EISSN: 1552-4965</identifier><identifier>EISSN: 1097-4636</identifier><identifier>DOI: 10.1002/jbm.a.10606</identifier><identifier>PMID: 12833441</identifier><identifier>CODEN: JBMRBG</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acrylic Resins - chemistry ; Acrylic Resins - radiation effects ; Biocompatible Materials - chemistry ; Biocompatible Materials - radiation effects ; Biological and medical sciences ; crosslinking ; Equipment Failure ; Equipment Failure Analysis ; fatigue ; Hot Temperature ; initiation ; Medical sciences ; Microscopy, Electron, Scanning ; Orthopedic Equipment ; polyethylene ; Polyethylenes - chemistry ; Polyethylenes - radiation effects ; propagation ; Prostheses and Implants ; Stress, Mechanical ; ultrahigh molecular weight polyethylene (UHMWPE) ; X-Ray Diffraction</subject><ispartof>Journal of biomedical materials research, 2003-07, Vol.66A (1), p.146-154</ispartof><rights>Copyright © 2003 Wiley Periodicals, Inc.</rights><rights>2003 INIST-CNRS</rights><rights>Copyright 2003 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5856-b248a91e731e5161b21a94721ee4e24d6a00f0c6d572ebbbcd4b8159807988833</citedby><cites>FETCH-LOGICAL-c5856-b248a91e731e5161b21a94721ee4e24d6a00f0c6d572ebbbcd4b8159807988833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.10606$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.10606$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14938220$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12833441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baker, D. A.</creatorcontrib><creatorcontrib>Bellare, A.</creatorcontrib><creatorcontrib>Pruitt, L.</creatorcontrib><title>The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene</title><title>Journal of biomedical materials research</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Crosslinked ultrahigh molecular weight polyethylene (UHMWPE) has been recently approved by the Food and Drug Administration for use in orthopedic implants. The majority of commercially available UHMWPE orthopedic components are crosslinked using e‐beam or gamma radiation. The level of crosslinking is controlled with radiation dose and free radicals are eliminated through heat treatments to prevent long‐term degradation associated with chain scission or oxidation mechanisms. Laboratory studies have demonstrated a substantial improvement in the wear resistance of crosslinked UHMWPE. However, a concern about the resistance to fatigue damage remains in the clinical community, especially for tibial components that sustain high cyclic contact stresses. The objective of this study was to investigate both the initiation and propagation aspects of fatigue cracks in radiation crosslinked medical‐grade UHMWPE. This work evaluated three levels of radiation, which induced three crosslink densities, on the fatigue crack propagation and total fatigue life behavior. Both as‐received UHMWPE, as well as those that underwent an identical thermal history as the crosslinked UHMWPE were used as controls. Fractured crack propagation specimens were examined using scanning electron microscopy to elucidate fatigue fracture mechanisms. The results of this work indicated that a low crosslink density may optimize the fatigue resistance from both a crack initiation and propagation standpoint. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 66A: 146–154, 2003</description><subject>Acrylic Resins - chemistry</subject><subject>Acrylic Resins - radiation effects</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - radiation effects</subject><subject>Biological and medical sciences</subject><subject>crosslinking</subject><subject>Equipment Failure</subject><subject>Equipment Failure Analysis</subject><subject>fatigue</subject><subject>Hot Temperature</subject><subject>initiation</subject><subject>Medical sciences</subject><subject>Microscopy, Electron, Scanning</subject><subject>Orthopedic Equipment</subject><subject>polyethylene</subject><subject>Polyethylenes - chemistry</subject><subject>Polyethylenes - radiation effects</subject><subject>propagation</subject><subject>Prostheses and Implants</subject><subject>Stress, Mechanical</subject><subject>ultrahigh molecular weight polyethylene (UHMWPE)</subject><subject>X-Ray Diffraction</subject><issn>1549-3296</issn><issn>0021-9304</issn><issn>1552-4965</issn><issn>1097-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1z0zAQhj0MDC2FE3fGF7gwLlpZn0eagUKnfAwEOGpkeZ2ocWwjOQM58s9R4kBvhJNWu8_uSrtvlj0Gcg6E0Bc31frcJlMQcSc7Bc5pwbTgd3c200VJtTjJHsR4k2BBOL2fnQBVZckYnGa_5kvMsWnQjTHvm7zGRUDcWS70Mba-W_lukfddPiawsaNfbDDFrFvlvvOjT54UtF2dD6Ef7GK6B4w-jrZz-1J9GJf9gLV3xSLYGvOhb7c4Lrctdvgwu9fYNuKjw3mWfXn9aj57U1x_uHw7e3ldOK64KCrKlNWAsgTkIKCiYDWTFBAZUlYLS0hDnKi5pFhVlatZpYBrRaRWKn33LHs21U3v_L7BOJq1jw7b1nbYb6KRJQOlCDkKUq1Jmh38BygZ4cCOg4qUwKU8CoLSVCjCE_h8AvdbCtiYIfi1DVsDxOxUYZIqjDV7VST6yaHsplpjfcseZJCApwfARmfbJqTN-XjLMV0qSnejgYn74Vvc_qunubp496d5MeUkQeDPvzk2rIyQpeTm2_tLc8G-frz6PJubT-VvaG7fAQ</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Baker, D. A.</creator><creator>Bellare, A.</creator><creator>Pruitt, L.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>John Wiley &amp; Sons</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>JG9</scope><scope>7TB</scope><scope>F28</scope><scope>7X8</scope></search><sort><creationdate>20030701</creationdate><title>The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene</title><author>Baker, D. A. ; Bellare, A. ; Pruitt, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5856-b248a91e731e5161b21a94721ee4e24d6a00f0c6d572ebbbcd4b8159807988833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acrylic Resins - chemistry</topic><topic>Acrylic Resins - radiation effects</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - radiation effects</topic><topic>Biological and medical sciences</topic><topic>crosslinking</topic><topic>Equipment Failure</topic><topic>Equipment Failure Analysis</topic><topic>fatigue</topic><topic>Hot Temperature</topic><topic>initiation</topic><topic>Medical sciences</topic><topic>Microscopy, Electron, Scanning</topic><topic>Orthopedic Equipment</topic><topic>polyethylene</topic><topic>Polyethylenes - chemistry</topic><topic>Polyethylenes - radiation effects</topic><topic>propagation</topic><topic>Prostheses and Implants</topic><topic>Stress, Mechanical</topic><topic>ultrahigh molecular weight polyethylene (UHMWPE)</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, D. A.</creatorcontrib><creatorcontrib>Bellare, A.</creatorcontrib><creatorcontrib>Pruitt, L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, D. A.</au><au>Bellare, A.</au><au>Pruitt, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene</atitle><jtitle>Journal of biomedical materials research</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2003-07-01</date><risdate>2003</risdate><volume>66A</volume><issue>1</issue><spage>146</spage><epage>154</epage><pages>146-154</pages><issn>1549-3296</issn><issn>0021-9304</issn><eissn>1552-4965</eissn><eissn>1097-4636</eissn><coden>JBMRBG</coden><abstract>Crosslinked ultrahigh molecular weight polyethylene (UHMWPE) has been recently approved by the Food and Drug Administration for use in orthopedic implants. The majority of commercially available UHMWPE orthopedic components are crosslinked using e‐beam or gamma radiation. The level of crosslinking is controlled with radiation dose and free radicals are eliminated through heat treatments to prevent long‐term degradation associated with chain scission or oxidation mechanisms. Laboratory studies have demonstrated a substantial improvement in the wear resistance of crosslinked UHMWPE. However, a concern about the resistance to fatigue damage remains in the clinical community, especially for tibial components that sustain high cyclic contact stresses. The objective of this study was to investigate both the initiation and propagation aspects of fatigue cracks in radiation crosslinked medical‐grade UHMWPE. This work evaluated three levels of radiation, which induced three crosslink densities, on the fatigue crack propagation and total fatigue life behavior. Both as‐received UHMWPE, as well as those that underwent an identical thermal history as the crosslinked UHMWPE were used as controls. Fractured crack propagation specimens were examined using scanning electron microscopy to elucidate fatigue fracture mechanisms. The results of this work indicated that a low crosslink density may optimize the fatigue resistance from both a crack initiation and propagation standpoint. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 66A: 146–154, 2003</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>12833441</pmid><doi>10.1002/jbm.a.10606</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research, 2003-07, Vol.66A (1), p.146-154
issn 1549-3296
0021-9304
1552-4965
1097-4636
language eng
recordid cdi_proquest_miscellaneous_73418800
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acrylic Resins - chemistry
Acrylic Resins - radiation effects
Biocompatible Materials - chemistry
Biocompatible Materials - radiation effects
Biological and medical sciences
crosslinking
Equipment Failure
Equipment Failure Analysis
fatigue
Hot Temperature
initiation
Medical sciences
Microscopy, Electron, Scanning
Orthopedic Equipment
polyethylene
Polyethylenes - chemistry
Polyethylenes - radiation effects
propagation
Prostheses and Implants
Stress, Mechanical
ultrahigh molecular weight polyethylene (UHMWPE)
X-Ray Diffraction
title The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20degree%20of%20crosslinking%20on%20the%20fatigue%20crack%20initiation%20and%20propagation%20resistance%20of%20orthopedic-grade%20polyethylene&rft.jtitle=Journal%20of%20biomedical%20materials%20research&rft.au=Baker,%20D.%20A.&rft.date=2003-07-01&rft.volume=66A&rft.issue=1&rft.spage=146&rft.epage=154&rft.pages=146-154&rft.issn=1549-3296&rft.eissn=1552-4965&rft.coden=JBMRBG&rft_id=info:doi/10.1002/jbm.a.10606&rft_dat=%3Cproquest_cross%3E28031577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18926805&rft_id=info:pmid/12833441&rfr_iscdi=true