Analysis of protein and cell volume distribution in glucose-limited continuous cultures of budding yeast
Method of flow cytometric analysis have recently been developed that make it possible to obtain segregated data on a single cell basis. In particular, it has been previously demonstrated that protein distributions obtained by flow cytometry give information about the law of growth of the cell popula...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 1986-02, Vol.28 (2), p.185-190 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Method of flow cytometric analysis have recently been developed that make it possible to obtain segregated data on a single cell basis. In particular, it has been previously demonstrated that protein distributions obtained by flow cytometry give information about the law of growth of the cell population and the law of growth of the single cell; thus these distribution show how the microbial population is actually growing at the moment of the analysis and may yield more accurate and predictive information. We have extended the analysis of protein distribution and cell volume distribution to continuous cultures of Saccharomyces cerevisiae growing in a glucose‐limited chemostat. We have found that: (1) to each dilution rate corresponds a given protein and volume distribution that does not change with time in steady state cultures; (2) there is a good proportionality between the average cell volume and the average protein content; (3) the protein distribution obtained can be easily analyzed with the model of growth of yeast previously developed in our laboratory; (4) the analysis of perturbed states shows that both protein distribution and volume distribution change very quickly; thus they are very sensitive parameters and can be used for monitoring and controlling industrial fermentation. |
---|---|
ISSN: | 0006-3592 1097-0290 |
DOI: | 10.1002/bit.260280206 |