Heterogenous Catalysis Mediated by Plasmon Heating

We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2009-12, Vol.9 (12), p.4417-4423
Hauptverfasser: Adleman, James R, Boyd, David A, Goodwin, David G, Psaltis, Demetri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4423
container_issue 12
container_start_page 4417
container_title Nano letters
container_volume 9
creator Adleman, James R
Boyd, David A
Goodwin, David G
Psaltis, Demetri
description We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstrate our approach by reforming a flowing, liquid mixture of ethanol and water over gold nanoparticle catalysts in a microfluidic channel. Plasmon heating of the nanoparticles provides not only the heat of reaction but the means to generate both water and ethanol vapor locally over the catalysts, which in turn allows the chip and the fluid lines to remain at room temperature. The measured products of the reaction, CO2, CO, and H2, are consistent with catalytic steam reforming of ethanol. The approach, which we refer to as plasmon-assisted catalysis, is general and can be used with a variety of endothermic catalytic processes involving nanoparticles.
doi_str_mv 10.1021/nl902711n
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734175856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734175856</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-c35a3aac01a0dadf1ed31d1488a9a15cfe0f7a7b58a611d459e090afee69d13a3</originalsourceid><addsrcrecordid>eNpt0LFOwzAQBmALgWgpDLwAyoIQQ8Bnx0k8ogooUhEMMEdX-1KlSpxiJ0PfnqBG7cJ0N3z67_Qzdg38AbiAR1drLjIAd8KmoCSPU63F6WHPkwm7CGHDOddS8XM2Aa15ngs1ZWJBHfl2Ta7tQzTHDutdqEL0TrbCjmy02kWfNYamddGCsKvc-pKdlVgHuhrnjH2_PH_NF_Hy4_Vt_rSMUWa6i41UKBENB-QWbQlkJVhI8hw1gjIl8TLDbKVyTAFsojRxzbEkSrUFiXLG7va5W9_-9BS6oqmCobpGR8OzRSYTyFSu0kHe76XxbQieymLrqwb9rgBe_DVUHBoa7M2Y2q8askc5VjKA2xFgMFiXHp2pwsEJIXiWKHF0aEKxaXvvhjL-OfgLjrp5Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734175856</pqid></control><display><type>article</type><title>Heterogenous Catalysis Mediated by Plasmon Heating</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Adleman, James R ; Boyd, David A ; Goodwin, David G ; Psaltis, Demetri</creator><creatorcontrib>Adleman, James R ; Boyd, David A ; Goodwin, David G ; Psaltis, Demetri</creatorcontrib><description>We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstrate our approach by reforming a flowing, liquid mixture of ethanol and water over gold nanoparticle catalysts in a microfluidic channel. Plasmon heating of the nanoparticles provides not only the heat of reaction but the means to generate both water and ethanol vapor locally over the catalysts, which in turn allows the chip and the fluid lines to remain at room temperature. The measured products of the reaction, CO2, CO, and H2, are consistent with catalytic steam reforming of ethanol. The approach, which we refer to as plasmon-assisted catalysis, is general and can be used with a variety of endothermic catalytic processes involving nanoparticles.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl902711n</identifier><identifier>PMID: 19908825</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Catalysis ; Catalytic methods ; Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Equipment Design ; Equipment Failure Analysis ; Ethanol - chemistry ; Exact sciences and technology ; Heating - instrumentation ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Methods of nanofabrication ; Microfluidics - instrumentation ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanotechnology - instrumentation ; Physics ; Surface and interface electron states ; Surface Plasmon Resonance - instrumentation ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Nano letters, 2009-12, Vol.9 (12), p.4417-4423</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-c35a3aac01a0dadf1ed31d1488a9a15cfe0f7a7b58a611d459e090afee69d13a3</citedby><cites>FETCH-LOGICAL-a379t-c35a3aac01a0dadf1ed31d1488a9a15cfe0f7a7b58a611d459e090afee69d13a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl902711n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl902711n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22207452$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19908825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adleman, James R</creatorcontrib><creatorcontrib>Boyd, David A</creatorcontrib><creatorcontrib>Goodwin, David G</creatorcontrib><creatorcontrib>Psaltis, Demetri</creatorcontrib><title>Heterogenous Catalysis Mediated by Plasmon Heating</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstrate our approach by reforming a flowing, liquid mixture of ethanol and water over gold nanoparticle catalysts in a microfluidic channel. Plasmon heating of the nanoparticles provides not only the heat of reaction but the means to generate both water and ethanol vapor locally over the catalysts, which in turn allows the chip and the fluid lines to remain at room temperature. The measured products of the reaction, CO2, CO, and H2, are consistent with catalytic steam reforming of ethanol. The approach, which we refer to as plasmon-assisted catalysis, is general and can be used with a variety of endothermic catalytic processes involving nanoparticles.</description><subject>Catalysis</subject><subject>Catalytic methods</subject><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Ethanol - chemistry</subject><subject>Exact sciences and technology</subject><subject>Heating - instrumentation</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Microfluidics - instrumentation</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotechnology - instrumentation</subject><subject>Physics</subject><subject>Surface and interface electron states</subject><subject>Surface Plasmon Resonance - instrumentation</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0LFOwzAQBmALgWgpDLwAyoIQQ8Bnx0k8ogooUhEMMEdX-1KlSpxiJ0PfnqBG7cJ0N3z67_Qzdg38AbiAR1drLjIAd8KmoCSPU63F6WHPkwm7CGHDOddS8XM2Aa15ngs1ZWJBHfl2Ta7tQzTHDutdqEL0TrbCjmy02kWfNYamddGCsKvc-pKdlVgHuhrnjH2_PH_NF_Hy4_Vt_rSMUWa6i41UKBENB-QWbQlkJVhI8hw1gjIl8TLDbKVyTAFsojRxzbEkSrUFiXLG7va5W9_-9BS6oqmCobpGR8OzRSYTyFSu0kHe76XxbQieymLrqwb9rgBe_DVUHBoa7M2Y2q8askc5VjKA2xFgMFiXHp2pwsEJIXiWKHF0aEKxaXvvhjL-OfgLjrp5Zw</recordid><startdate>20091209</startdate><enddate>20091209</enddate><creator>Adleman, James R</creator><creator>Boyd, David A</creator><creator>Goodwin, David G</creator><creator>Psaltis, Demetri</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091209</creationdate><title>Heterogenous Catalysis Mediated by Plasmon Heating</title><author>Adleman, James R ; Boyd, David A ; Goodwin, David G ; Psaltis, Demetri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-c35a3aac01a0dadf1ed31d1488a9a15cfe0f7a7b58a611d459e090afee69d13a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Catalysis</topic><topic>Catalytic methods</topic><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Ethanol - chemistry</topic><topic>Exact sciences and technology</topic><topic>Heating - instrumentation</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Microfluidics - instrumentation</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotechnology - instrumentation</topic><topic>Physics</topic><topic>Surface and interface electron states</topic><topic>Surface Plasmon Resonance - instrumentation</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adleman, James R</creatorcontrib><creatorcontrib>Boyd, David A</creatorcontrib><creatorcontrib>Goodwin, David G</creatorcontrib><creatorcontrib>Psaltis, Demetri</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adleman, James R</au><au>Boyd, David A</au><au>Goodwin, David G</au><au>Psaltis, Demetri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogenous Catalysis Mediated by Plasmon Heating</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2009-12-09</date><risdate>2009</risdate><volume>9</volume><issue>12</issue><spage>4417</spage><epage>4423</epage><pages>4417-4423</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstrate our approach by reforming a flowing, liquid mixture of ethanol and water over gold nanoparticle catalysts in a microfluidic channel. Plasmon heating of the nanoparticles provides not only the heat of reaction but the means to generate both water and ethanol vapor locally over the catalysts, which in turn allows the chip and the fluid lines to remain at room temperature. The measured products of the reaction, CO2, CO, and H2, are consistent with catalytic steam reforming of ethanol. The approach, which we refer to as plasmon-assisted catalysis, is general and can be used with a variety of endothermic catalytic processes involving nanoparticles.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19908825</pmid><doi>10.1021/nl902711n</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2009-12, Vol.9 (12), p.4417-4423
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_734175856
source MEDLINE; American Chemical Society Journals
subjects Catalysis
Catalytic methods
Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Equipment Design
Equipment Failure Analysis
Ethanol - chemistry
Exact sciences and technology
Heating - instrumentation
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Methods of nanofabrication
Microfluidics - instrumentation
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanotechnology - instrumentation
Physics
Surface and interface electron states
Surface Plasmon Resonance - instrumentation
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title Heterogenous Catalysis Mediated by Plasmon Heating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogenous%20Catalysis%20Mediated%20by%20Plasmon%20Heating&rft.jtitle=Nano%20letters&rft.au=Adleman,%20James%20R&rft.date=2009-12-09&rft.volume=9&rft.issue=12&rft.spage=4417&rft.epage=4423&rft.pages=4417-4423&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl902711n&rft_dat=%3Cproquest_cross%3E734175856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734175856&rft_id=info:pmid/19908825&rfr_iscdi=true