Heterogenous Catalysis Mediated by Plasmon Heating
We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstra...
Gespeichert in:
Veröffentlicht in: | Nano letters 2009-12, Vol.9 (12), p.4417-4423 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4423 |
---|---|
container_issue | 12 |
container_start_page | 4417 |
container_title | Nano letters |
container_volume | 9 |
creator | Adleman, James R Boyd, David A Goodwin, David G Psaltis, Demetri |
description | We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstrate our approach by reforming a flowing, liquid mixture of ethanol and water over gold nanoparticle catalysts in a microfluidic channel. Plasmon heating of the nanoparticles provides not only the heat of reaction but the means to generate both water and ethanol vapor locally over the catalysts, which in turn allows the chip and the fluid lines to remain at room temperature. The measured products of the reaction, CO2, CO, and H2, are consistent with catalytic steam reforming of ethanol. The approach, which we refer to as plasmon-assisted catalysis, is general and can be used with a variety of endothermic catalytic processes involving nanoparticles. |
doi_str_mv | 10.1021/nl902711n |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734175856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734175856</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-c35a3aac01a0dadf1ed31d1488a9a15cfe0f7a7b58a611d459e090afee69d13a3</originalsourceid><addsrcrecordid>eNpt0LFOwzAQBmALgWgpDLwAyoIQQ8Bnx0k8ogooUhEMMEdX-1KlSpxiJ0PfnqBG7cJ0N3z67_Qzdg38AbiAR1drLjIAd8KmoCSPU63F6WHPkwm7CGHDOddS8XM2Aa15ngs1ZWJBHfl2Ta7tQzTHDutdqEL0TrbCjmy02kWfNYamddGCsKvc-pKdlVgHuhrnjH2_PH_NF_Hy4_Vt_rSMUWa6i41UKBENB-QWbQlkJVhI8hw1gjIl8TLDbKVyTAFsojRxzbEkSrUFiXLG7va5W9_-9BS6oqmCobpGR8OzRSYTyFSu0kHe76XxbQieymLrqwb9rgBe_DVUHBoa7M2Y2q8askc5VjKA2xFgMFiXHp2pwsEJIXiWKHF0aEKxaXvvhjL-OfgLjrp5Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734175856</pqid></control><display><type>article</type><title>Heterogenous Catalysis Mediated by Plasmon Heating</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Adleman, James R ; Boyd, David A ; Goodwin, David G ; Psaltis, Demetri</creator><creatorcontrib>Adleman, James R ; Boyd, David A ; Goodwin, David G ; Psaltis, Demetri</creatorcontrib><description>We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstrate our approach by reforming a flowing, liquid mixture of ethanol and water over gold nanoparticle catalysts in a microfluidic channel. Plasmon heating of the nanoparticles provides not only the heat of reaction but the means to generate both water and ethanol vapor locally over the catalysts, which in turn allows the chip and the fluid lines to remain at room temperature. The measured products of the reaction, CO2, CO, and H2, are consistent with catalytic steam reforming of ethanol. The approach, which we refer to as plasmon-assisted catalysis, is general and can be used with a variety of endothermic catalytic processes involving nanoparticles.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl902711n</identifier><identifier>PMID: 19908825</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Catalysis ; Catalytic methods ; Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Equipment Design ; Equipment Failure Analysis ; Ethanol - chemistry ; Exact sciences and technology ; Heating - instrumentation ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Methods of nanofabrication ; Microfluidics - instrumentation ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanotechnology - instrumentation ; Physics ; Surface and interface electron states ; Surface Plasmon Resonance - instrumentation ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Nano letters, 2009-12, Vol.9 (12), p.4417-4423</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-c35a3aac01a0dadf1ed31d1488a9a15cfe0f7a7b58a611d459e090afee69d13a3</citedby><cites>FETCH-LOGICAL-a379t-c35a3aac01a0dadf1ed31d1488a9a15cfe0f7a7b58a611d459e090afee69d13a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl902711n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl902711n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22207452$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19908825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adleman, James R</creatorcontrib><creatorcontrib>Boyd, David A</creatorcontrib><creatorcontrib>Goodwin, David G</creatorcontrib><creatorcontrib>Psaltis, Demetri</creatorcontrib><title>Heterogenous Catalysis Mediated by Plasmon Heating</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstrate our approach by reforming a flowing, liquid mixture of ethanol and water over gold nanoparticle catalysts in a microfluidic channel. Plasmon heating of the nanoparticles provides not only the heat of reaction but the means to generate both water and ethanol vapor locally over the catalysts, which in turn allows the chip and the fluid lines to remain at room temperature. The measured products of the reaction, CO2, CO, and H2, are consistent with catalytic steam reforming of ethanol. The approach, which we refer to as plasmon-assisted catalysis, is general and can be used with a variety of endothermic catalytic processes involving nanoparticles.</description><subject>Catalysis</subject><subject>Catalytic methods</subject><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Ethanol - chemistry</subject><subject>Exact sciences and technology</subject><subject>Heating - instrumentation</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Microfluidics - instrumentation</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotechnology - instrumentation</subject><subject>Physics</subject><subject>Surface and interface electron states</subject><subject>Surface Plasmon Resonance - instrumentation</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0LFOwzAQBmALgWgpDLwAyoIQQ8Bnx0k8ogooUhEMMEdX-1KlSpxiJ0PfnqBG7cJ0N3z67_Qzdg38AbiAR1drLjIAd8KmoCSPU63F6WHPkwm7CGHDOddS8XM2Aa15ngs1ZWJBHfl2Ta7tQzTHDutdqEL0TrbCjmy02kWfNYamddGCsKvc-pKdlVgHuhrnjH2_PH_NF_Hy4_Vt_rSMUWa6i41UKBENB-QWbQlkJVhI8hw1gjIl8TLDbKVyTAFsojRxzbEkSrUFiXLG7va5W9_-9BS6oqmCobpGR8OzRSYTyFSu0kHe76XxbQieymLrqwb9rgBe_DVUHBoa7M2Y2q8askc5VjKA2xFgMFiXHp2pwsEJIXiWKHF0aEKxaXvvhjL-OfgLjrp5Zw</recordid><startdate>20091209</startdate><enddate>20091209</enddate><creator>Adleman, James R</creator><creator>Boyd, David A</creator><creator>Goodwin, David G</creator><creator>Psaltis, Demetri</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091209</creationdate><title>Heterogenous Catalysis Mediated by Plasmon Heating</title><author>Adleman, James R ; Boyd, David A ; Goodwin, David G ; Psaltis, Demetri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-c35a3aac01a0dadf1ed31d1488a9a15cfe0f7a7b58a611d459e090afee69d13a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Catalysis</topic><topic>Catalytic methods</topic><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Ethanol - chemistry</topic><topic>Exact sciences and technology</topic><topic>Heating - instrumentation</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Microfluidics - instrumentation</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotechnology - instrumentation</topic><topic>Physics</topic><topic>Surface and interface electron states</topic><topic>Surface Plasmon Resonance - instrumentation</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adleman, James R</creatorcontrib><creatorcontrib>Boyd, David A</creatorcontrib><creatorcontrib>Goodwin, David G</creatorcontrib><creatorcontrib>Psaltis, Demetri</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adleman, James R</au><au>Boyd, David A</au><au>Goodwin, David G</au><au>Psaltis, Demetri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogenous Catalysis Mediated by Plasmon Heating</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2009-12-09</date><risdate>2009</risdate><volume>9</volume><issue>12</issue><spage>4417</spage><epage>4423</epage><pages>4417-4423</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We introduce a new method for performing and miniaturizing many types of heterogeneous catalysis involving nanoparticles. The method makes use of the plasmon resonance present in nanoscale metal catalysts to provide the necessary heat of reaction when illuminated with a low-power laser. We demonstrate our approach by reforming a flowing, liquid mixture of ethanol and water over gold nanoparticle catalysts in a microfluidic channel. Plasmon heating of the nanoparticles provides not only the heat of reaction but the means to generate both water and ethanol vapor locally over the catalysts, which in turn allows the chip and the fluid lines to remain at room temperature. The measured products of the reaction, CO2, CO, and H2, are consistent with catalytic steam reforming of ethanol. The approach, which we refer to as plasmon-assisted catalysis, is general and can be used with a variety of endothermic catalytic processes involving nanoparticles.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19908825</pmid><doi>10.1021/nl902711n</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2009-12, Vol.9 (12), p.4417-4423 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_734175856 |
source | MEDLINE; American Chemical Society Journals |
subjects | Catalysis Catalytic methods Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Equipment Design Equipment Failure Analysis Ethanol - chemistry Exact sciences and technology Heating - instrumentation Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials science Methods of nanofabrication Microfluidics - instrumentation Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanotechnology - instrumentation Physics Surface and interface electron states Surface Plasmon Resonance - instrumentation Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) |
title | Heterogenous Catalysis Mediated by Plasmon Heating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogenous%20Catalysis%20Mediated%20by%20Plasmon%20Heating&rft.jtitle=Nano%20letters&rft.au=Adleman,%20James%20R&rft.date=2009-12-09&rft.volume=9&rft.issue=12&rft.spage=4417&rft.epage=4423&rft.pages=4417-4423&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl902711n&rft_dat=%3Cproquest_cross%3E734175856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734175856&rft_id=info:pmid/19908825&rfr_iscdi=true |