An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging
In glioblastoma (GBM), promoter methylation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) is associated with benefit from chemotherapy. Correlations between MGMT promoter methylation and visually assessed imaging features on magnetic resonance (MR) have been reported suggestin...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2010-01, Vol.49 (2), p.1398-1405 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In glioblastoma (GBM), promoter methylation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) is associated with benefit from chemotherapy. Correlations between MGMT promoter methylation and visually assessed imaging features on magnetic resonance (MR) have been reported suggesting that noninvasive detection of MGMT methylation status might be possible. Our study assessed whether MGMT methylation status in GBM could be predicted using MR imaging. We conducted a retrospective analysis of MR images in patients with newly diagnosed GBM. Tumor texture was assessed by two methods. First, we analyzed texture by expert consensus describing the tumor borders, presence or absence of cysts, pattern of enhancement, and appearance of tumor signal in T2-weighted images. Then, we applied space–frequency texture analysis based on the S-transform. Tumor location within the brain was determined using automatized image registration and segmentation techniques. Their association with MGMT methylation was analyzed. We confirmed that ring enhancement assessed visually is significantly associated with unmethylated MGMT promoter status (P=0.006). Texture features on T2-weighted images assessed by the space–frequency analysis were significantly different between methylated and unmethylated cases (P |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2009.09.049 |