Machine learning for the analysis of indoor radon distribution, compared with ordinary kriging
Having a reliable forecasting tool is necessary to correctly identify radon prone areas, especially in cases where the variable of interest is the indoor radon concentration. An appropriate characterisation of the features of the buildings becomes fundamental. In this work, the results obtained (in...
Gespeichert in:
Veröffentlicht in: | Radiation protection dosimetry 2009-12, Vol.137 (3-4), p.324-328 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!