Machine learning for the analysis of indoor radon distribution, compared with ordinary kriging

Having a reliable forecasting tool is necessary to correctly identify radon prone areas, especially in cases where the variable of interest is the indoor radon concentration. An appropriate characterisation of the features of the buildings becomes fundamental. In this work, the results obtained (in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation protection dosimetry 2009-12, Vol.137 (3-4), p.324-328
Hauptverfasser: Pegoretti, S., Verdi, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!