Effect of position isomerism on the formation and physicochemical properties of pharmaceutical co-crystals

The effect of position isomerism on the co-crystals formation and physicochemical properties was evaluated. Piracetam was used as the model compound. Six position isomers, 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-dihydroxybenzoic acid (DHBA), were used as the co-crystal formers. Co-crystals were prepar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmaceutical sciences 2010-01, Vol.99 (1), p.246-254
Hauptverfasser: Liao, Xiangmin, Gautam, Mohan, Grill, Andreas, Zhu, Haijian Jim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of position isomerism on the co-crystals formation and physicochemical properties was evaluated. Piracetam was used as the model compound. Six position isomers, 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-dihydroxybenzoic acid (DHBA), were used as the co-crystal formers. Co-crystals were prepared on a 1:1 molar ratio by crystallization from acetonitrile. The solid-state properties of co-crystals were characterized using X-ray powder diffractometry (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR). All co-crystal formers formed co-crystal with piracetam except 2,6-DHBA. This failure was possibly due to steric hindrance of two bulk hydroxyl groups and preference of intra-molecular hydrogen bonding formation between hydroxyl group and carboxylic acid group. The XRD patterns of resulting co-crystal indicated that they are highly crystalline and different than parental compounds. Based on the single crystal data, P_23DHBA is orthorhombic while P_24DHBA, P_34DHBA, and P_35DHB belong to monoclinlic system. The hydrogen bonding network patterns of the co-crystals are also different. DSC data showed that the melting temperatures of resulting co-crystals are all lower than that of the starting materials. The melting point rank order of the co-crystals is: P_24DHBA > P_34DHBA > P_23DHBA > P_25DHBA > P_35DHBA. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:246–254, 2010
ISSN:0022-3549
1520-6017
DOI:10.1002/jps.21824