A clinical study to assess fall risk using a single waist accelerometer
Falls have various causes and are often associated with mobility impairments. Preventive steps to avoid falls may be initiated, if an increasing fall risk could be detected in time. The objective of this article is to identify an automated sensor-based method to determine fall risk of patients based...
Gespeichert in:
Veröffentlicht in: | Informatics for health & social care 2009-12, Vol.34 (4), p.181-188 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | 4 |
container_start_page | 181 |
container_title | Informatics for health & social care |
container_volume | 34 |
creator | Gietzelt, Matthias Nemitz, Gerhard Wolf, Klaus-Hendrik Meyer Zu Schwabedissen, Hubertus Haux, Reinhold Marschollek, Michael |
description | Falls have various causes and are often associated with mobility impairments. Preventive steps to avoid falls may be initiated, if an increasing fall risk could be detected in time. The objective of this article is to identify an automated sensor-based method to determine fall risk of patients based on objectively measured gait parameters. One hundred fifty-one healthy subjects and 90 subjects at risk of falling were measured during a Timed 'Up & Go' test with a single triaxial acceleration sensor worn on a waist belt. The fall risk was assessed using the STRATIFY score. A decision tree induction algorithm was used to distinguish between subjects with high and low risk using the determined gait parameters. The results of the risk classification produce an overall accuracy of 90.4% in relation to STRATIFY score. The sensitivity amount to 89.4%, the specificity to 91.0% and the reliability parameter κ equals 0.79. The method presented is able to distinguish between subjects with high and low fall risk. It is unobtrusive and therefore may be applied over extended time periods. A subsequent study is needed to confirm the model's suitability for data recorded in patients' everyday lives. |
doi_str_mv | 10.3109/17538150903356275 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_734145205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734145205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-ad80ace0937221e4ef84827e36c514d7c31b46f2d924f460ab0e0317d5be58ac3</originalsourceid><addsrcrecordid>eNqFkEtLHEEUhYsQia_8gGxC7bIaU8-uLnQjg1FBcKPr5k717Vha3WXqdiPz7-1hhgQJiatzuXzncDiMfZHiREvhv0tndS2t8EJrWylnP7CDzW9Ry8p-_H1bt88OiR6FqIRQ7hPbl95Lr3x1wC7PeUhxiAESp3Fq13zMHIiQiHeQEi-RnvhEcfjJgW8kIX-BSCOHEDBhyT2OWI7Z3owTft7pEbv_cXG3vFrc3F5eL89vFsEKPS6grQUEFF47pSQa7GpTK4e6Claa1gUtV6bqVOuV6UwlYCVQaOlau0JbQ9BH7Ns297nkXxPS2PSR5h4JBswTNc5UUtnau_dJbaSxStiZlFsylExUsGueS-yhrBspms3QzV9Dz56vu_Rp1WP7x7FbdgbOtkAculx6eMkltc0I65RLV2AIkTbZ_84_fWN_QEjjQ4CCzWOeyjBv_J92r5KNnMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734145205</pqid></control><display><type>article</type><title>A clinical study to assess fall risk using a single waist accelerometer</title><source>MEDLINE</source><source>Taylor & Francis Medical Library - CRKN</source><source>Taylor & Francis Journals Complete</source><creator>Gietzelt, Matthias ; Nemitz, Gerhard ; Wolf, Klaus-Hendrik ; Meyer Zu Schwabedissen, Hubertus ; Haux, Reinhold ; Marschollek, Michael</creator><creatorcontrib>Gietzelt, Matthias ; Nemitz, Gerhard ; Wolf, Klaus-Hendrik ; Meyer Zu Schwabedissen, Hubertus ; Haux, Reinhold ; Marschollek, Michael</creatorcontrib><description>Falls have various causes and are often associated with mobility impairments. Preventive steps to avoid falls may be initiated, if an increasing fall risk could be detected in time. The objective of this article is to identify an automated sensor-based method to determine fall risk of patients based on objectively measured gait parameters. One hundred fifty-one healthy subjects and 90 subjects at risk of falling were measured during a Timed 'Up & Go' test with a single triaxial acceleration sensor worn on a waist belt. The fall risk was assessed using the STRATIFY score. A decision tree induction algorithm was used to distinguish between subjects with high and low risk using the determined gait parameters. The results of the risk classification produce an overall accuracy of 90.4% in relation to STRATIFY score. The sensitivity amount to 89.4%, the specificity to 91.0% and the reliability parameter κ equals 0.79. The method presented is able to distinguish between subjects with high and low fall risk. It is unobtrusive and therefore may be applied over extended time periods. A subsequent study is needed to confirm the model's suitability for data recorded in patients' everyday lives.</description><identifier>ISSN: 1753-8157</identifier><identifier>EISSN: 1753-8165</identifier><identifier>DOI: 10.3109/17538150903356275</identifier><identifier>PMID: 19919296</identifier><language>eng</language><publisher>England: Informa UK Ltd</publisher><subject>accelerometry ; Accidental Falls - prevention & control ; Aged ; Aged, 80 and over ; Fall risk ; geriatric patients ; Germany ; home monitoring ; Humans ; Middle Aged ; Monitoring, Ambulatory - instrumentation ; pervasive healthcare ; Prospective Studies ; Risk Assessment - methods</subject><ispartof>Informatics for health & social care, 2009-12, Vol.34 (4), p.181-188</ispartof><rights>2009 Informa UK Ltd 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-ad80ace0937221e4ef84827e36c514d7c31b46f2d924f460ab0e0317d5be58ac3</citedby><cites>FETCH-LOGICAL-c503t-ad80ace0937221e4ef84827e36c514d7c31b46f2d924f460ab0e0317d5be58ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.3109/17538150903356275$$EPDF$$P50$$Ginformahealthcare$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.3109/17538150903356275$$EHTML$$P50$$Ginformahealthcare$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,59726,60409,60515,61194,61229,61375,61410</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19919296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gietzelt, Matthias</creatorcontrib><creatorcontrib>Nemitz, Gerhard</creatorcontrib><creatorcontrib>Wolf, Klaus-Hendrik</creatorcontrib><creatorcontrib>Meyer Zu Schwabedissen, Hubertus</creatorcontrib><creatorcontrib>Haux, Reinhold</creatorcontrib><creatorcontrib>Marschollek, Michael</creatorcontrib><title>A clinical study to assess fall risk using a single waist accelerometer</title><title>Informatics for health & social care</title><addtitle>Inform Health Soc Care</addtitle><description>Falls have various causes and are often associated with mobility impairments. Preventive steps to avoid falls may be initiated, if an increasing fall risk could be detected in time. The objective of this article is to identify an automated sensor-based method to determine fall risk of patients based on objectively measured gait parameters. One hundred fifty-one healthy subjects and 90 subjects at risk of falling were measured during a Timed 'Up & Go' test with a single triaxial acceleration sensor worn on a waist belt. The fall risk was assessed using the STRATIFY score. A decision tree induction algorithm was used to distinguish between subjects with high and low risk using the determined gait parameters. The results of the risk classification produce an overall accuracy of 90.4% in relation to STRATIFY score. The sensitivity amount to 89.4%, the specificity to 91.0% and the reliability parameter κ equals 0.79. The method presented is able to distinguish between subjects with high and low fall risk. It is unobtrusive and therefore may be applied over extended time periods. A subsequent study is needed to confirm the model's suitability for data recorded in patients' everyday lives.</description><subject>accelerometry</subject><subject>Accidental Falls - prevention & control</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Fall risk</subject><subject>geriatric patients</subject><subject>Germany</subject><subject>home monitoring</subject><subject>Humans</subject><subject>Middle Aged</subject><subject>Monitoring, Ambulatory - instrumentation</subject><subject>pervasive healthcare</subject><subject>Prospective Studies</subject><subject>Risk Assessment - methods</subject><issn>1753-8157</issn><issn>1753-8165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLHEEUhYsQia_8gGxC7bIaU8-uLnQjg1FBcKPr5k717Vha3WXqdiPz7-1hhgQJiatzuXzncDiMfZHiREvhv0tndS2t8EJrWylnP7CDzW9Ry8p-_H1bt88OiR6FqIRQ7hPbl95Lr3x1wC7PeUhxiAESp3Fq13zMHIiQiHeQEi-RnvhEcfjJgW8kIX-BSCOHEDBhyT2OWI7Z3owTft7pEbv_cXG3vFrc3F5eL89vFsEKPS6grQUEFF47pSQa7GpTK4e6Claa1gUtV6bqVOuV6UwlYCVQaOlau0JbQ9BH7Ns297nkXxPS2PSR5h4JBswTNc5UUtnau_dJbaSxStiZlFsylExUsGueS-yhrBspms3QzV9Dz56vu_Rp1WP7x7FbdgbOtkAculx6eMkltc0I65RLV2AIkTbZ_84_fWN_QEjjQ4CCzWOeyjBv_J92r5KNnMs</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Gietzelt, Matthias</creator><creator>Nemitz, Gerhard</creator><creator>Wolf, Klaus-Hendrik</creator><creator>Meyer Zu Schwabedissen, Hubertus</creator><creator>Haux, Reinhold</creator><creator>Marschollek, Michael</creator><general>Informa UK Ltd</general><general>Taylor & Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>200912</creationdate><title>A clinical study to assess fall risk using a single waist accelerometer</title><author>Gietzelt, Matthias ; Nemitz, Gerhard ; Wolf, Klaus-Hendrik ; Meyer Zu Schwabedissen, Hubertus ; Haux, Reinhold ; Marschollek, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-ad80ace0937221e4ef84827e36c514d7c31b46f2d924f460ab0e0317d5be58ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>accelerometry</topic><topic>Accidental Falls - prevention & control</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Fall risk</topic><topic>geriatric patients</topic><topic>Germany</topic><topic>home monitoring</topic><topic>Humans</topic><topic>Middle Aged</topic><topic>Monitoring, Ambulatory - instrumentation</topic><topic>pervasive healthcare</topic><topic>Prospective Studies</topic><topic>Risk Assessment - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gietzelt, Matthias</creatorcontrib><creatorcontrib>Nemitz, Gerhard</creatorcontrib><creatorcontrib>Wolf, Klaus-Hendrik</creatorcontrib><creatorcontrib>Meyer Zu Schwabedissen, Hubertus</creatorcontrib><creatorcontrib>Haux, Reinhold</creatorcontrib><creatorcontrib>Marschollek, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Informatics for health & social care</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gietzelt, Matthias</au><au>Nemitz, Gerhard</au><au>Wolf, Klaus-Hendrik</au><au>Meyer Zu Schwabedissen, Hubertus</au><au>Haux, Reinhold</au><au>Marschollek, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A clinical study to assess fall risk using a single waist accelerometer</atitle><jtitle>Informatics for health & social care</jtitle><addtitle>Inform Health Soc Care</addtitle><date>2009-12</date><risdate>2009</risdate><volume>34</volume><issue>4</issue><spage>181</spage><epage>188</epage><pages>181-188</pages><issn>1753-8157</issn><eissn>1753-8165</eissn><abstract>Falls have various causes and are often associated with mobility impairments. Preventive steps to avoid falls may be initiated, if an increasing fall risk could be detected in time. The objective of this article is to identify an automated sensor-based method to determine fall risk of patients based on objectively measured gait parameters. One hundred fifty-one healthy subjects and 90 subjects at risk of falling were measured during a Timed 'Up & Go' test with a single triaxial acceleration sensor worn on a waist belt. The fall risk was assessed using the STRATIFY score. A decision tree induction algorithm was used to distinguish between subjects with high and low risk using the determined gait parameters. The results of the risk classification produce an overall accuracy of 90.4% in relation to STRATIFY score. The sensitivity amount to 89.4%, the specificity to 91.0% and the reliability parameter κ equals 0.79. The method presented is able to distinguish between subjects with high and low fall risk. It is unobtrusive and therefore may be applied over extended time periods. A subsequent study is needed to confirm the model's suitability for data recorded in patients' everyday lives.</abstract><cop>England</cop><pub>Informa UK Ltd</pub><pmid>19919296</pmid><doi>10.3109/17538150903356275</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1753-8157 |
ispartof | Informatics for health & social care, 2009-12, Vol.34 (4), p.181-188 |
issn | 1753-8157 1753-8165 |
language | eng |
recordid | cdi_proquest_miscellaneous_734145205 |
source | MEDLINE; Taylor & Francis Medical Library - CRKN; Taylor & Francis Journals Complete |
subjects | accelerometry Accidental Falls - prevention & control Aged Aged, 80 and over Fall risk geriatric patients Germany home monitoring Humans Middle Aged Monitoring, Ambulatory - instrumentation pervasive healthcare Prospective Studies Risk Assessment - methods |
title | A clinical study to assess fall risk using a single waist accelerometer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20clinical%20study%20to%20assess%20fall%20risk%20using%20a%20single%20waist%20accelerometer&rft.jtitle=Informatics%20for%20health%20&%20social%20care&rft.au=Gietzelt,%20Matthias&rft.date=2009-12&rft.volume=34&rft.issue=4&rft.spage=181&rft.epage=188&rft.pages=181-188&rft.issn=1753-8157&rft.eissn=1753-8165&rft_id=info:doi/10.3109/17538150903356275&rft_dat=%3Cproquest_infor%3E734145205%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734145205&rft_id=info:pmid/19919296&rfr_iscdi=true |