Correction for misclassification of a categorized exposure in binary regression using replication data
Continuous epidemiologic exposure data are often categorized according to one or more cut points before inclusion in a regression analysis involving some outcome variable. If the original data are subject to measurement error, the categorized data will be afflicted with misclassification, which is d...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2009-11, Vol.28 (27), p.3386-3410 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3410 |
---|---|
container_issue | 27 |
container_start_page | 3386 |
container_title | Statistics in medicine |
container_volume | 28 |
creator | Dalen, Ingvild Buonaccorsi, John P. Sexton, Joseph A. Laake, Petter Thoresen, Magne |
description | Continuous epidemiologic exposure data are often categorized according to one or more cut points before inclusion in a regression analysis involving some outcome variable. If the original data are subject to measurement error, the categorized data will be afflicted with misclassification, which is differential, and which induces biases in naïve methods that ignore the misclassification. We propose a method for measurement error adjustment in these settings, when there are replicate data available on the original measurements, and when the outcome variable is dichotomous. Working on the continuous measurements, conditional densities of the exposure given the outcome are estimated and used to obtain odds ratios. The estimation of densities is done either parametrically or nonparametrically. The method is compared with the naïve approach of simply categorizing the erroneous mean measurements in simulation studies, and although the nonparametric method is more variable, it has the best overall performance, the greatest differences being observed in settings where the effects and/or the measurement errors are large. The performance of the parametric method is highly dependent on the model fit. Applying the methods to a real‐life data set from the Framingham Heart Study produced larger estimated odds ratios for coronary heart disease as a result of elevated systolic blood pressure, as compared with naïve odds ratios. We provide some discussion of alternative procedures that might be considered including regression calibration, SIMEX and the use of estimated misclassification probabilities. Copyright © 2009 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.3712 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734136445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734136445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3852-6083935c1d01da3b2b1cebcba25df6d316450c58a698d682937ea99ff94b5a933</originalsourceid><addsrcrecordid>eNp10F1P2zAUBmALDdHCkPgFKNrNdhPwRxzHlxANhgRDE2xcWo5zXLmkcbEbrfDr59IwpEm7snX0-JXPi9ARwScEY3oa3eKECUJ30JRgKXJMefUBTTEVIi8F4RO0H-McY0I4FXtoQqTgoij4FNnahwBm5XyfWR-yhYum0zE664x-nXqb6SzdYeaDe4E2g_XSxyFA5vqscb0Oz1mAWYD0KPEhun6WBsvuLaDVK_0R7VrdRTgczwP08-Lrff0tv769vKrPrnPDKk7zEldMMm5Ii0mrWUMbYqAxjaa8tWXLSFlwbHilS1m1ZUUlE6CltFYWDdeSsQP0eZu7DP5pgLhSm4Wg63QPfohKsIKwMm2e5Kd_5NwPoU-fU5QywgQjMqEvW2SCjzGAVcvgFmljRbDaNK9S82rTfKLHY97QLKB9h2PVCeRb8Nt18PzfIHV3dTMGjt7FFaz_eh0eVSmY4Orh-6W6kee_8MUPrGr2BzIhnMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223137319</pqid></control><display><type>article</type><title>Correction for misclassification of a categorized exposure in binary regression using replication data</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dalen, Ingvild ; Buonaccorsi, John P. ; Sexton, Joseph A. ; Laake, Petter ; Thoresen, Magne</creator><creatorcontrib>Dalen, Ingvild ; Buonaccorsi, John P. ; Sexton, Joseph A. ; Laake, Petter ; Thoresen, Magne</creatorcontrib><description>Continuous epidemiologic exposure data are often categorized according to one or more cut points before inclusion in a regression analysis involving some outcome variable. If the original data are subject to measurement error, the categorized data will be afflicted with misclassification, which is differential, and which induces biases in naïve methods that ignore the misclassification. We propose a method for measurement error adjustment in these settings, when there are replicate data available on the original measurements, and when the outcome variable is dichotomous. Working on the continuous measurements, conditional densities of the exposure given the outcome are estimated and used to obtain odds ratios. The estimation of densities is done either parametrically or nonparametrically. The method is compared with the naïve approach of simply categorizing the erroneous mean measurements in simulation studies, and although the nonparametric method is more variable, it has the best overall performance, the greatest differences being observed in settings where the effects and/or the measurement errors are large. The performance of the parametric method is highly dependent on the model fit. Applying the methods to a real‐life data set from the Framingham Heart Study produced larger estimated odds ratios for coronary heart disease as a result of elevated systolic blood pressure, as compared with naïve odds ratios. We provide some discussion of alternative procedures that might be considered including regression calibration, SIMEX and the use of estimated misclassification probabilities. Copyright © 2009 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.3712</identifier><identifier>PMID: 19757445</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Adult ; Aged ; Blood Pressure - physiology ; categorization ; Computer Simulation ; Coronary Disease - physiopathology ; density estimation ; differential ; Epidemiology ; Humans ; Male ; measurement error ; Measurement errors ; Medical statistics ; Middle Aged ; Models, Statistical ; nonparametric ; Odds Ratio ; Parameter estimation ; Regression Analysis ; Simulation</subject><ispartof>Statistics in medicine, 2009-11, Vol.28 (27), p.3386-3410</ispartof><rights>Copyright © 2009 John Wiley & Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Nov 30, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3852-6083935c1d01da3b2b1cebcba25df6d316450c58a698d682937ea99ff94b5a933</citedby><cites>FETCH-LOGICAL-c3852-6083935c1d01da3b2b1cebcba25df6d316450c58a698d682937ea99ff94b5a933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.3712$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.3712$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19757445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dalen, Ingvild</creatorcontrib><creatorcontrib>Buonaccorsi, John P.</creatorcontrib><creatorcontrib>Sexton, Joseph A.</creatorcontrib><creatorcontrib>Laake, Petter</creatorcontrib><creatorcontrib>Thoresen, Magne</creatorcontrib><title>Correction for misclassification of a categorized exposure in binary regression using replication data</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Continuous epidemiologic exposure data are often categorized according to one or more cut points before inclusion in a regression analysis involving some outcome variable. If the original data are subject to measurement error, the categorized data will be afflicted with misclassification, which is differential, and which induces biases in naïve methods that ignore the misclassification. We propose a method for measurement error adjustment in these settings, when there are replicate data available on the original measurements, and when the outcome variable is dichotomous. Working on the continuous measurements, conditional densities of the exposure given the outcome are estimated and used to obtain odds ratios. The estimation of densities is done either parametrically or nonparametrically. The method is compared with the naïve approach of simply categorizing the erroneous mean measurements in simulation studies, and although the nonparametric method is more variable, it has the best overall performance, the greatest differences being observed in settings where the effects and/or the measurement errors are large. The performance of the parametric method is highly dependent on the model fit. Applying the methods to a real‐life data set from the Framingham Heart Study produced larger estimated odds ratios for coronary heart disease as a result of elevated systolic blood pressure, as compared with naïve odds ratios. We provide some discussion of alternative procedures that might be considered including regression calibration, SIMEX and the use of estimated misclassification probabilities. Copyright © 2009 John Wiley & Sons, Ltd.</description><subject>Adult</subject><subject>Aged</subject><subject>Blood Pressure - physiology</subject><subject>categorization</subject><subject>Computer Simulation</subject><subject>Coronary Disease - physiopathology</subject><subject>density estimation</subject><subject>differential</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Male</subject><subject>measurement error</subject><subject>Measurement errors</subject><subject>Medical statistics</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>nonparametric</subject><subject>Odds Ratio</subject><subject>Parameter estimation</subject><subject>Regression Analysis</subject><subject>Simulation</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10F1P2zAUBmALDdHCkPgFKNrNdhPwRxzHlxANhgRDE2xcWo5zXLmkcbEbrfDr59IwpEm7snX0-JXPi9ARwScEY3oa3eKECUJ30JRgKXJMefUBTTEVIi8F4RO0H-McY0I4FXtoQqTgoij4FNnahwBm5XyfWR-yhYum0zE664x-nXqb6SzdYeaDe4E2g_XSxyFA5vqscb0Oz1mAWYD0KPEhun6WBsvuLaDVK_0R7VrdRTgczwP08-Lrff0tv769vKrPrnPDKk7zEldMMm5Ii0mrWUMbYqAxjaa8tWXLSFlwbHilS1m1ZUUlE6CltFYWDdeSsQP0eZu7DP5pgLhSm4Wg63QPfohKsIKwMm2e5Kd_5NwPoU-fU5QywgQjMqEvW2SCjzGAVcvgFmljRbDaNK9S82rTfKLHY97QLKB9h2PVCeRb8Nt18PzfIHV3dTMGjt7FFaz_eh0eVSmY4Orh-6W6kee_8MUPrGr2BzIhnMQ</recordid><startdate>20091130</startdate><enddate>20091130</enddate><creator>Dalen, Ingvild</creator><creator>Buonaccorsi, John P.</creator><creator>Sexton, Joseph A.</creator><creator>Laake, Petter</creator><creator>Thoresen, Magne</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20091130</creationdate><title>Correction for misclassification of a categorized exposure in binary regression using replication data</title><author>Dalen, Ingvild ; Buonaccorsi, John P. ; Sexton, Joseph A. ; Laake, Petter ; Thoresen, Magne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3852-6083935c1d01da3b2b1cebcba25df6d316450c58a698d682937ea99ff94b5a933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Blood Pressure - physiology</topic><topic>categorization</topic><topic>Computer Simulation</topic><topic>Coronary Disease - physiopathology</topic><topic>density estimation</topic><topic>differential</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Male</topic><topic>measurement error</topic><topic>Measurement errors</topic><topic>Medical statistics</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>nonparametric</topic><topic>Odds Ratio</topic><topic>Parameter estimation</topic><topic>Regression Analysis</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalen, Ingvild</creatorcontrib><creatorcontrib>Buonaccorsi, John P.</creatorcontrib><creatorcontrib>Sexton, Joseph A.</creatorcontrib><creatorcontrib>Laake, Petter</creatorcontrib><creatorcontrib>Thoresen, Magne</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalen, Ingvild</au><au>Buonaccorsi, John P.</au><au>Sexton, Joseph A.</au><au>Laake, Petter</au><au>Thoresen, Magne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correction for misclassification of a categorized exposure in binary regression using replication data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2009-11-30</date><risdate>2009</risdate><volume>28</volume><issue>27</issue><spage>3386</spage><epage>3410</epage><pages>3386-3410</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Continuous epidemiologic exposure data are often categorized according to one or more cut points before inclusion in a regression analysis involving some outcome variable. If the original data are subject to measurement error, the categorized data will be afflicted with misclassification, which is differential, and which induces biases in naïve methods that ignore the misclassification. We propose a method for measurement error adjustment in these settings, when there are replicate data available on the original measurements, and when the outcome variable is dichotomous. Working on the continuous measurements, conditional densities of the exposure given the outcome are estimated and used to obtain odds ratios. The estimation of densities is done either parametrically or nonparametrically. The method is compared with the naïve approach of simply categorizing the erroneous mean measurements in simulation studies, and although the nonparametric method is more variable, it has the best overall performance, the greatest differences being observed in settings where the effects and/or the measurement errors are large. The performance of the parametric method is highly dependent on the model fit. Applying the methods to a real‐life data set from the Framingham Heart Study produced larger estimated odds ratios for coronary heart disease as a result of elevated systolic blood pressure, as compared with naïve odds ratios. We provide some discussion of alternative procedures that might be considered including regression calibration, SIMEX and the use of estimated misclassification probabilities. Copyright © 2009 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>19757445</pmid><doi>10.1002/sim.3712</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2009-11, Vol.28 (27), p.3386-3410 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_734136445 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Adult Aged Blood Pressure - physiology categorization Computer Simulation Coronary Disease - physiopathology density estimation differential Epidemiology Humans Male measurement error Measurement errors Medical statistics Middle Aged Models, Statistical nonparametric Odds Ratio Parameter estimation Regression Analysis Simulation |
title | Correction for misclassification of a categorized exposure in binary regression using replication data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correction%20for%20misclassification%20of%20a%20categorized%20exposure%20in%20binary%20regression%20using%20replication%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=Dalen,%20Ingvild&rft.date=2009-11-30&rft.volume=28&rft.issue=27&rft.spage=3386&rft.epage=3410&rft.pages=3386-3410&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.3712&rft_dat=%3Cproquest_cross%3E734136445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223137319&rft_id=info:pmid/19757445&rfr_iscdi=true |