Correction for misclassification of a categorized exposure in binary regression using replication data

Continuous epidemiologic exposure data are often categorized according to one or more cut points before inclusion in a regression analysis involving some outcome variable. If the original data are subject to measurement error, the categorized data will be afflicted with misclassification, which is d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2009-11, Vol.28 (27), p.3386-3410
Hauptverfasser: Dalen, Ingvild, Buonaccorsi, John P., Sexton, Joseph A., Laake, Petter, Thoresen, Magne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3410
container_issue 27
container_start_page 3386
container_title Statistics in medicine
container_volume 28
creator Dalen, Ingvild
Buonaccorsi, John P.
Sexton, Joseph A.
Laake, Petter
Thoresen, Magne
description Continuous epidemiologic exposure data are often categorized according to one or more cut points before inclusion in a regression analysis involving some outcome variable. If the original data are subject to measurement error, the categorized data will be afflicted with misclassification, which is differential, and which induces biases in naïve methods that ignore the misclassification. We propose a method for measurement error adjustment in these settings, when there are replicate data available on the original measurements, and when the outcome variable is dichotomous. Working on the continuous measurements, conditional densities of the exposure given the outcome are estimated and used to obtain odds ratios. The estimation of densities is done either parametrically or nonparametrically. The method is compared with the naïve approach of simply categorizing the erroneous mean measurements in simulation studies, and although the nonparametric method is more variable, it has the best overall performance, the greatest differences being observed in settings where the effects and/or the measurement errors are large. The performance of the parametric method is highly dependent on the model fit. Applying the methods to a real‐life data set from the Framingham Heart Study produced larger estimated odds ratios for coronary heart disease as a result of elevated systolic blood pressure, as compared with naïve odds ratios. We provide some discussion of alternative procedures that might be considered including regression calibration, SIMEX and the use of estimated misclassification probabilities. Copyright © 2009 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.3712
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734136445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734136445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3852-6083935c1d01da3b2b1cebcba25df6d316450c58a698d682937ea99ff94b5a933</originalsourceid><addsrcrecordid>eNp10F1P2zAUBmALDdHCkPgFKNrNdhPwRxzHlxANhgRDE2xcWo5zXLmkcbEbrfDr59IwpEm7snX0-JXPi9ARwScEY3oa3eKECUJ30JRgKXJMefUBTTEVIi8F4RO0H-McY0I4FXtoQqTgoij4FNnahwBm5XyfWR-yhYum0zE664x-nXqb6SzdYeaDe4E2g_XSxyFA5vqscb0Oz1mAWYD0KPEhun6WBsvuLaDVK_0R7VrdRTgczwP08-Lrff0tv769vKrPrnPDKk7zEldMMm5Ii0mrWUMbYqAxjaa8tWXLSFlwbHilS1m1ZUUlE6CltFYWDdeSsQP0eZu7DP5pgLhSm4Wg63QPfohKsIKwMm2e5Kd_5NwPoU-fU5QywgQjMqEvW2SCjzGAVcvgFmljRbDaNK9S82rTfKLHY97QLKB9h2PVCeRb8Nt18PzfIHV3dTMGjt7FFaz_eh0eVSmY4Orh-6W6kee_8MUPrGr2BzIhnMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223137319</pqid></control><display><type>article</type><title>Correction for misclassification of a categorized exposure in binary regression using replication data</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dalen, Ingvild ; Buonaccorsi, John P. ; Sexton, Joseph A. ; Laake, Petter ; Thoresen, Magne</creator><creatorcontrib>Dalen, Ingvild ; Buonaccorsi, John P. ; Sexton, Joseph A. ; Laake, Petter ; Thoresen, Magne</creatorcontrib><description>Continuous epidemiologic exposure data are often categorized according to one or more cut points before inclusion in a regression analysis involving some outcome variable. If the original data are subject to measurement error, the categorized data will be afflicted with misclassification, which is differential, and which induces biases in naïve methods that ignore the misclassification. We propose a method for measurement error adjustment in these settings, when there are replicate data available on the original measurements, and when the outcome variable is dichotomous. Working on the continuous measurements, conditional densities of the exposure given the outcome are estimated and used to obtain odds ratios. The estimation of densities is done either parametrically or nonparametrically. The method is compared with the naïve approach of simply categorizing the erroneous mean measurements in simulation studies, and although the nonparametric method is more variable, it has the best overall performance, the greatest differences being observed in settings where the effects and/or the measurement errors are large. The performance of the parametric method is highly dependent on the model fit. Applying the methods to a real‐life data set from the Framingham Heart Study produced larger estimated odds ratios for coronary heart disease as a result of elevated systolic blood pressure, as compared with naïve odds ratios. We provide some discussion of alternative procedures that might be considered including regression calibration, SIMEX and the use of estimated misclassification probabilities. Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.3712</identifier><identifier>PMID: 19757445</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Adult ; Aged ; Blood Pressure - physiology ; categorization ; Computer Simulation ; Coronary Disease - physiopathology ; density estimation ; differential ; Epidemiology ; Humans ; Male ; measurement error ; Measurement errors ; Medical statistics ; Middle Aged ; Models, Statistical ; nonparametric ; Odds Ratio ; Parameter estimation ; Regression Analysis ; Simulation</subject><ispartof>Statistics in medicine, 2009-11, Vol.28 (27), p.3386-3410</ispartof><rights>Copyright © 2009 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Nov 30, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3852-6083935c1d01da3b2b1cebcba25df6d316450c58a698d682937ea99ff94b5a933</citedby><cites>FETCH-LOGICAL-c3852-6083935c1d01da3b2b1cebcba25df6d316450c58a698d682937ea99ff94b5a933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.3712$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.3712$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19757445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dalen, Ingvild</creatorcontrib><creatorcontrib>Buonaccorsi, John P.</creatorcontrib><creatorcontrib>Sexton, Joseph A.</creatorcontrib><creatorcontrib>Laake, Petter</creatorcontrib><creatorcontrib>Thoresen, Magne</creatorcontrib><title>Correction for misclassification of a categorized exposure in binary regression using replication data</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Continuous epidemiologic exposure data are often categorized according to one or more cut points before inclusion in a regression analysis involving some outcome variable. If the original data are subject to measurement error, the categorized data will be afflicted with misclassification, which is differential, and which induces biases in naïve methods that ignore the misclassification. We propose a method for measurement error adjustment in these settings, when there are replicate data available on the original measurements, and when the outcome variable is dichotomous. Working on the continuous measurements, conditional densities of the exposure given the outcome are estimated and used to obtain odds ratios. The estimation of densities is done either parametrically or nonparametrically. The method is compared with the naïve approach of simply categorizing the erroneous mean measurements in simulation studies, and although the nonparametric method is more variable, it has the best overall performance, the greatest differences being observed in settings where the effects and/or the measurement errors are large. The performance of the parametric method is highly dependent on the model fit. Applying the methods to a real‐life data set from the Framingham Heart Study produced larger estimated odds ratios for coronary heart disease as a result of elevated systolic blood pressure, as compared with naïve odds ratios. We provide some discussion of alternative procedures that might be considered including regression calibration, SIMEX and the use of estimated misclassification probabilities. Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><subject>Adult</subject><subject>Aged</subject><subject>Blood Pressure - physiology</subject><subject>categorization</subject><subject>Computer Simulation</subject><subject>Coronary Disease - physiopathology</subject><subject>density estimation</subject><subject>differential</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Male</subject><subject>measurement error</subject><subject>Measurement errors</subject><subject>Medical statistics</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>nonparametric</subject><subject>Odds Ratio</subject><subject>Parameter estimation</subject><subject>Regression Analysis</subject><subject>Simulation</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10F1P2zAUBmALDdHCkPgFKNrNdhPwRxzHlxANhgRDE2xcWo5zXLmkcbEbrfDr59IwpEm7snX0-JXPi9ARwScEY3oa3eKECUJ30JRgKXJMefUBTTEVIi8F4RO0H-McY0I4FXtoQqTgoij4FNnahwBm5XyfWR-yhYum0zE664x-nXqb6SzdYeaDe4E2g_XSxyFA5vqscb0Oz1mAWYD0KPEhun6WBsvuLaDVK_0R7VrdRTgczwP08-Lrff0tv769vKrPrnPDKk7zEldMMm5Ii0mrWUMbYqAxjaa8tWXLSFlwbHilS1m1ZUUlE6CltFYWDdeSsQP0eZu7DP5pgLhSm4Wg63QPfohKsIKwMm2e5Kd_5NwPoU-fU5QywgQjMqEvW2SCjzGAVcvgFmljRbDaNK9S82rTfKLHY97QLKB9h2PVCeRb8Nt18PzfIHV3dTMGjt7FFaz_eh0eVSmY4Orh-6W6kee_8MUPrGr2BzIhnMQ</recordid><startdate>20091130</startdate><enddate>20091130</enddate><creator>Dalen, Ingvild</creator><creator>Buonaccorsi, John P.</creator><creator>Sexton, Joseph A.</creator><creator>Laake, Petter</creator><creator>Thoresen, Magne</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20091130</creationdate><title>Correction for misclassification of a categorized exposure in binary regression using replication data</title><author>Dalen, Ingvild ; Buonaccorsi, John P. ; Sexton, Joseph A. ; Laake, Petter ; Thoresen, Magne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3852-6083935c1d01da3b2b1cebcba25df6d316450c58a698d682937ea99ff94b5a933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Blood Pressure - physiology</topic><topic>categorization</topic><topic>Computer Simulation</topic><topic>Coronary Disease - physiopathology</topic><topic>density estimation</topic><topic>differential</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Male</topic><topic>measurement error</topic><topic>Measurement errors</topic><topic>Medical statistics</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>nonparametric</topic><topic>Odds Ratio</topic><topic>Parameter estimation</topic><topic>Regression Analysis</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalen, Ingvild</creatorcontrib><creatorcontrib>Buonaccorsi, John P.</creatorcontrib><creatorcontrib>Sexton, Joseph A.</creatorcontrib><creatorcontrib>Laake, Petter</creatorcontrib><creatorcontrib>Thoresen, Magne</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalen, Ingvild</au><au>Buonaccorsi, John P.</au><au>Sexton, Joseph A.</au><au>Laake, Petter</au><au>Thoresen, Magne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correction for misclassification of a categorized exposure in binary regression using replication data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2009-11-30</date><risdate>2009</risdate><volume>28</volume><issue>27</issue><spage>3386</spage><epage>3410</epage><pages>3386-3410</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Continuous epidemiologic exposure data are often categorized according to one or more cut points before inclusion in a regression analysis involving some outcome variable. If the original data are subject to measurement error, the categorized data will be afflicted with misclassification, which is differential, and which induces biases in naïve methods that ignore the misclassification. We propose a method for measurement error adjustment in these settings, when there are replicate data available on the original measurements, and when the outcome variable is dichotomous. Working on the continuous measurements, conditional densities of the exposure given the outcome are estimated and used to obtain odds ratios. The estimation of densities is done either parametrically or nonparametrically. The method is compared with the naïve approach of simply categorizing the erroneous mean measurements in simulation studies, and although the nonparametric method is more variable, it has the best overall performance, the greatest differences being observed in settings where the effects and/or the measurement errors are large. The performance of the parametric method is highly dependent on the model fit. Applying the methods to a real‐life data set from the Framingham Heart Study produced larger estimated odds ratios for coronary heart disease as a result of elevated systolic blood pressure, as compared with naïve odds ratios. We provide some discussion of alternative procedures that might be considered including regression calibration, SIMEX and the use of estimated misclassification probabilities. Copyright © 2009 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>19757445</pmid><doi>10.1002/sim.3712</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2009-11, Vol.28 (27), p.3386-3410
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_734136445
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adult
Aged
Blood Pressure - physiology
categorization
Computer Simulation
Coronary Disease - physiopathology
density estimation
differential
Epidemiology
Humans
Male
measurement error
Measurement errors
Medical statistics
Middle Aged
Models, Statistical
nonparametric
Odds Ratio
Parameter estimation
Regression Analysis
Simulation
title Correction for misclassification of a categorized exposure in binary regression using replication data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correction%20for%20misclassification%20of%20a%20categorized%20exposure%20in%20binary%20regression%20using%20replication%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=Dalen,%20Ingvild&rft.date=2009-11-30&rft.volume=28&rft.issue=27&rft.spage=3386&rft.epage=3410&rft.pages=3386-3410&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.3712&rft_dat=%3Cproquest_cross%3E734136445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223137319&rft_id=info:pmid/19757445&rfr_iscdi=true