Second universal limit of wave segment propagation in excitable media
A free-boundary approach is applied to derive universal relationships between the excitability and the velocity and the shape of stabilized wave segments in a broad class of excitable media. In the earlier discovered low excitability limit wave segments approach critical fingers. We demonstrate the...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2009-10, Vol.103 (15), p.154102-154102, Article 154102 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154102 |
---|---|
container_issue | 15 |
container_start_page | 154102 |
container_title | Physical review letters |
container_volume | 103 |
creator | Kothe, A Zykov, V S Engel, H |
description | A free-boundary approach is applied to derive universal relationships between the excitability and the velocity and the shape of stabilized wave segments in a broad class of excitable media. In the earlier discovered low excitability limit wave segments approach critical fingers. We demonstrate the existence of a second universal limit (a motionless circular shaped spot) in highly excitable media. Analytically obtained asymptotic relationships and interpolation formula connecting both excitability limits are in good quantitative agreement with results from numerical simulations. |
doi_str_mv | 10.1103/physrevlett.103.154102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734136386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734136386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-3479d2fa1bcc30f6a1bb7ac15d1bf6f813fb57b81c3642fc4b0ffcf85cae68a83</originalsourceid><addsrcrecordid>eNpFkElPwzAQhS0EoqXwFyrfOKXMxImdHFFVFqkSiOUcOY5djLIRO4H-e4xaidPMk96b5SNkibBCBHbTf-zdoKdae78KeoVpghCfkDmCyCOBmJySOQDDKAcQM3Lh3CcAYMyzczLDPIeUJzAnm1eturaiY2snPThZ09o21tPO0G85aer0rtGtp_3Q9XInve1aaluqf5T1sqw1bXRl5SU5M7J2-upYF-T9bvO2foi2T_eP69ttpJjgPmKJyKvYSCyVYmB4aEohFaYVloabDJkpU1FmqBhPYqOSEoxRJkuV1DyTGVuQ68PccM7XqJ0vGuuUrmvZ6m50hWAJMs4yHpz84FRD5wIpU_SDbeSwLxCKP4LFcyD4oqdtIFj86QPBEFweV4xl-O0_dkTGfgF9kHFi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734136386</pqid></control><display><type>article</type><title>Second universal limit of wave segment propagation in excitable media</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Kothe, A ; Zykov, V S ; Engel, H</creator><creatorcontrib>Kothe, A ; Zykov, V S ; Engel, H</creatorcontrib><description>A free-boundary approach is applied to derive universal relationships between the excitability and the velocity and the shape of stabilized wave segments in a broad class of excitable media. In the earlier discovered low excitability limit wave segments approach critical fingers. We demonstrate the existence of a second universal limit (a motionless circular shaped spot) in highly excitable media. Analytically obtained asymptotic relationships and interpolation formula connecting both excitability limits are in good quantitative agreement with results from numerical simulations.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.103.154102</identifier><identifier>PMID: 19905640</identifier><language>eng</language><publisher>United States</publisher><subject>Computer Simulation ; Models, Biological ; Models, Statistical ; Models, Theoretical</subject><ispartof>Physical review letters, 2009-10, Vol.103 (15), p.154102-154102, Article 154102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-3479d2fa1bcc30f6a1bb7ac15d1bf6f813fb57b81c3642fc4b0ffcf85cae68a83</citedby><cites>FETCH-LOGICAL-c376t-3479d2fa1bcc30f6a1bb7ac15d1bf6f813fb57b81c3642fc4b0ffcf85cae68a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19905640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kothe, A</creatorcontrib><creatorcontrib>Zykov, V S</creatorcontrib><creatorcontrib>Engel, H</creatorcontrib><title>Second universal limit of wave segment propagation in excitable media</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>A free-boundary approach is applied to derive universal relationships between the excitability and the velocity and the shape of stabilized wave segments in a broad class of excitable media. In the earlier discovered low excitability limit wave segments approach critical fingers. We demonstrate the existence of a second universal limit (a motionless circular shaped spot) in highly excitable media. Analytically obtained asymptotic relationships and interpolation formula connecting both excitability limits are in good quantitative agreement with results from numerical simulations.</description><subject>Computer Simulation</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Models, Theoretical</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkElPwzAQhS0EoqXwFyrfOKXMxImdHFFVFqkSiOUcOY5djLIRO4H-e4xaidPMk96b5SNkibBCBHbTf-zdoKdae78KeoVpghCfkDmCyCOBmJySOQDDKAcQM3Lh3CcAYMyzczLDPIeUJzAnm1eturaiY2snPThZ09o21tPO0G85aer0rtGtp_3Q9XInve1aaluqf5T1sqw1bXRl5SU5M7J2-upYF-T9bvO2foi2T_eP69ttpJjgPmKJyKvYSCyVYmB4aEohFaYVloabDJkpU1FmqBhPYqOSEoxRJkuV1DyTGVuQ68PccM7XqJ0vGuuUrmvZ6m50hWAJMs4yHpz84FRD5wIpU_SDbeSwLxCKP4LFcyD4oqdtIFj86QPBEFweV4xl-O0_dkTGfgF9kHFi</recordid><startdate>20091009</startdate><enddate>20091009</enddate><creator>Kothe, A</creator><creator>Zykov, V S</creator><creator>Engel, H</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091009</creationdate><title>Second universal limit of wave segment propagation in excitable media</title><author>Kothe, A ; Zykov, V S ; Engel, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-3479d2fa1bcc30f6a1bb7ac15d1bf6f813fb57b81c3642fc4b0ffcf85cae68a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer Simulation</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Models, Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kothe, A</creatorcontrib><creatorcontrib>Zykov, V S</creatorcontrib><creatorcontrib>Engel, H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kothe, A</au><au>Zykov, V S</au><au>Engel, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second universal limit of wave segment propagation in excitable media</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2009-10-09</date><risdate>2009</risdate><volume>103</volume><issue>15</issue><spage>154102</spage><epage>154102</epage><pages>154102-154102</pages><artnum>154102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>A free-boundary approach is applied to derive universal relationships between the excitability and the velocity and the shape of stabilized wave segments in a broad class of excitable media. In the earlier discovered low excitability limit wave segments approach critical fingers. We demonstrate the existence of a second universal limit (a motionless circular shaped spot) in highly excitable media. Analytically obtained asymptotic relationships and interpolation formula connecting both excitability limits are in good quantitative agreement with results from numerical simulations.</abstract><cop>United States</cop><pmid>19905640</pmid><doi>10.1103/physrevlett.103.154102</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2009-10, Vol.103 (15), p.154102-154102, Article 154102 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_734136386 |
source | MEDLINE; American Physical Society Journals |
subjects | Computer Simulation Models, Biological Models, Statistical Models, Theoretical |
title | Second universal limit of wave segment propagation in excitable media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second%20universal%20limit%20of%20wave%20segment%20propagation%20in%20excitable%20media&rft.jtitle=Physical%20review%20letters&rft.au=Kothe,%20A&rft.date=2009-10-09&rft.volume=103&rft.issue=15&rft.spage=154102&rft.epage=154102&rft.pages=154102-154102&rft.artnum=154102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.103.154102&rft_dat=%3Cproquest_cross%3E734136386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734136386&rft_id=info:pmid/19905640&rfr_iscdi=true |