Second universal limit of wave segment propagation in excitable media

A free-boundary approach is applied to derive universal relationships between the excitability and the velocity and the shape of stabilized wave segments in a broad class of excitable media. In the earlier discovered low excitability limit wave segments approach critical fingers. We demonstrate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2009-10, Vol.103 (15), p.154102-154102, Article 154102
Hauptverfasser: Kothe, A, Zykov, V S, Engel, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154102
container_issue 15
container_start_page 154102
container_title Physical review letters
container_volume 103
creator Kothe, A
Zykov, V S
Engel, H
description A free-boundary approach is applied to derive universal relationships between the excitability and the velocity and the shape of stabilized wave segments in a broad class of excitable media. In the earlier discovered low excitability limit wave segments approach critical fingers. We demonstrate the existence of a second universal limit (a motionless circular shaped spot) in highly excitable media. Analytically obtained asymptotic relationships and interpolation formula connecting both excitability limits are in good quantitative agreement with results from numerical simulations.
doi_str_mv 10.1103/physrevlett.103.154102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734136386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734136386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-3479d2fa1bcc30f6a1bb7ac15d1bf6f813fb57b81c3642fc4b0ffcf85cae68a83</originalsourceid><addsrcrecordid>eNpFkElPwzAQhS0EoqXwFyrfOKXMxImdHFFVFqkSiOUcOY5djLIRO4H-e4xaidPMk96b5SNkibBCBHbTf-zdoKdae78KeoVpghCfkDmCyCOBmJySOQDDKAcQM3Lh3CcAYMyzczLDPIeUJzAnm1eturaiY2snPThZ09o21tPO0G85aer0rtGtp_3Q9XInve1aaluqf5T1sqw1bXRl5SU5M7J2-upYF-T9bvO2foi2T_eP69ttpJjgPmKJyKvYSCyVYmB4aEohFaYVloabDJkpU1FmqBhPYqOSEoxRJkuV1DyTGVuQ68PccM7XqJ0vGuuUrmvZ6m50hWAJMs4yHpz84FRD5wIpU_SDbeSwLxCKP4LFcyD4oqdtIFj86QPBEFweV4xl-O0_dkTGfgF9kHFi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734136386</pqid></control><display><type>article</type><title>Second universal limit of wave segment propagation in excitable media</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Kothe, A ; Zykov, V S ; Engel, H</creator><creatorcontrib>Kothe, A ; Zykov, V S ; Engel, H</creatorcontrib><description>A free-boundary approach is applied to derive universal relationships between the excitability and the velocity and the shape of stabilized wave segments in a broad class of excitable media. In the earlier discovered low excitability limit wave segments approach critical fingers. We demonstrate the existence of a second universal limit (a motionless circular shaped spot) in highly excitable media. Analytically obtained asymptotic relationships and interpolation formula connecting both excitability limits are in good quantitative agreement with results from numerical simulations.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.103.154102</identifier><identifier>PMID: 19905640</identifier><language>eng</language><publisher>United States</publisher><subject>Computer Simulation ; Models, Biological ; Models, Statistical ; Models, Theoretical</subject><ispartof>Physical review letters, 2009-10, Vol.103 (15), p.154102-154102, Article 154102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-3479d2fa1bcc30f6a1bb7ac15d1bf6f813fb57b81c3642fc4b0ffcf85cae68a83</citedby><cites>FETCH-LOGICAL-c376t-3479d2fa1bcc30f6a1bb7ac15d1bf6f813fb57b81c3642fc4b0ffcf85cae68a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19905640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kothe, A</creatorcontrib><creatorcontrib>Zykov, V S</creatorcontrib><creatorcontrib>Engel, H</creatorcontrib><title>Second universal limit of wave segment propagation in excitable media</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>A free-boundary approach is applied to derive universal relationships between the excitability and the velocity and the shape of stabilized wave segments in a broad class of excitable media. In the earlier discovered low excitability limit wave segments approach critical fingers. We demonstrate the existence of a second universal limit (a motionless circular shaped spot) in highly excitable media. Analytically obtained asymptotic relationships and interpolation formula connecting both excitability limits are in good quantitative agreement with results from numerical simulations.</description><subject>Computer Simulation</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Models, Theoretical</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkElPwzAQhS0EoqXwFyrfOKXMxImdHFFVFqkSiOUcOY5djLIRO4H-e4xaidPMk96b5SNkibBCBHbTf-zdoKdae78KeoVpghCfkDmCyCOBmJySOQDDKAcQM3Lh3CcAYMyzczLDPIeUJzAnm1eturaiY2snPThZ09o21tPO0G85aer0rtGtp_3Q9XInve1aaluqf5T1sqw1bXRl5SU5M7J2-upYF-T9bvO2foi2T_eP69ttpJjgPmKJyKvYSCyVYmB4aEohFaYVloabDJkpU1FmqBhPYqOSEoxRJkuV1DyTGVuQ68PccM7XqJ0vGuuUrmvZ6m50hWAJMs4yHpz84FRD5wIpU_SDbeSwLxCKP4LFcyD4oqdtIFj86QPBEFweV4xl-O0_dkTGfgF9kHFi</recordid><startdate>20091009</startdate><enddate>20091009</enddate><creator>Kothe, A</creator><creator>Zykov, V S</creator><creator>Engel, H</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091009</creationdate><title>Second universal limit of wave segment propagation in excitable media</title><author>Kothe, A ; Zykov, V S ; Engel, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-3479d2fa1bcc30f6a1bb7ac15d1bf6f813fb57b81c3642fc4b0ffcf85cae68a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer Simulation</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Models, Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kothe, A</creatorcontrib><creatorcontrib>Zykov, V S</creatorcontrib><creatorcontrib>Engel, H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kothe, A</au><au>Zykov, V S</au><au>Engel, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second universal limit of wave segment propagation in excitable media</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2009-10-09</date><risdate>2009</risdate><volume>103</volume><issue>15</issue><spage>154102</spage><epage>154102</epage><pages>154102-154102</pages><artnum>154102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>A free-boundary approach is applied to derive universal relationships between the excitability and the velocity and the shape of stabilized wave segments in a broad class of excitable media. In the earlier discovered low excitability limit wave segments approach critical fingers. We demonstrate the existence of a second universal limit (a motionless circular shaped spot) in highly excitable media. Analytically obtained asymptotic relationships and interpolation formula connecting both excitability limits are in good quantitative agreement with results from numerical simulations.</abstract><cop>United States</cop><pmid>19905640</pmid><doi>10.1103/physrevlett.103.154102</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2009-10, Vol.103 (15), p.154102-154102, Article 154102
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_734136386
source MEDLINE; American Physical Society Journals
subjects Computer Simulation
Models, Biological
Models, Statistical
Models, Theoretical
title Second universal limit of wave segment propagation in excitable media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second%20universal%20limit%20of%20wave%20segment%20propagation%20in%20excitable%20media&rft.jtitle=Physical%20review%20letters&rft.au=Kothe,%20A&rft.date=2009-10-09&rft.volume=103&rft.issue=15&rft.spage=154102&rft.epage=154102&rft.pages=154102-154102&rft.artnum=154102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.103.154102&rft_dat=%3Cproquest_cross%3E734136386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734136386&rft_id=info:pmid/19905640&rfr_iscdi=true