Spin dephasing in the dipole field around capillaries and cells: numerical solution
We numerically solve the Bloch-Torrey equation by discretizing the differential operators in real space using finite differences. The differential equation is either solved directly in time domain as initial-value problem or in frequency domain as boundary-value problem. Especially the solution in t...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2009-10, Vol.80 (4 Pt 2), p.046701-046701, Article 046701 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 046701 |
---|---|
container_issue | 4 Pt 2 |
container_start_page | 046701 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 80 |
creator | Ziener, C H Glutsch, S Jakob, P M Bauer, W R |
description | We numerically solve the Bloch-Torrey equation by discretizing the differential operators in real space using finite differences. The differential equation is either solved directly in time domain as initial-value problem or in frequency domain as boundary-value problem. Especially the solution in time domain is highly efficient and suitable for arbitrary domains and dimensions. As examples, we calculate the average magnetization and the frequency distribution for capillaries and cells which are idealized as cylinders and spheres, respectively. The solution is compared with the commonly used Gaussian approximation and the strong-collision approximation. While these approximations become exact in limiting cases (small or large diffusion coefficient), they strongly deviate from the numerical solution for intermediate values of the diffusion coefficient. |
doi_str_mv | 10.1103/PhysRevE.80.046701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734136171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734136171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-20647803958fd4b93076f1613c6eaa50987b896455a0ff72ae598695275a2443</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMotlb_gAvJztXUm3fiTqQ-oKDY7od0JmMjmYfJjNB_b4dWXN1z4JzD5UPomsCcEGB379td-nA_i7mGOXCpgJygKRECMsqUPB01MxlTQkzQRUpfAIwyzc_RhBgDgis5RatV5xtcum5rk28-8d70W4dL37XB4cq7UGIb26EpcWE7H4KN3iVsR-9CSPe4GWoXfWEDTm0Yet82l-issiG5q-OdofXTYv34ki3fnl8fH5ZZQRntMwqSKw3MCF2VfGMYKFkRSVghnbUCjFYbbSQXwkJVKWqdMFoaQZWwlHM2Q7eH2S6234NLfV77ND5lG9cOKVeMEyaJIvskPSSL2KYUXZV30dc27nIC-Ygy_0OZa8gPKPelm-P8sKld-V85smO_tCJwEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734136171</pqid></control><display><type>article</type><title>Spin dephasing in the dipole field around capillaries and cells: numerical solution</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Ziener, C H ; Glutsch, S ; Jakob, P M ; Bauer, W R</creator><creatorcontrib>Ziener, C H ; Glutsch, S ; Jakob, P M ; Bauer, W R</creatorcontrib><description>We numerically solve the Bloch-Torrey equation by discretizing the differential operators in real space using finite differences. The differential equation is either solved directly in time domain as initial-value problem or in frequency domain as boundary-value problem. Especially the solution in time domain is highly efficient and suitable for arbitrary domains and dimensions. As examples, we calculate the average magnetization and the frequency distribution for capillaries and cells which are idealized as cylinders and spheres, respectively. The solution is compared with the commonly used Gaussian approximation and the strong-collision approximation. While these approximations become exact in limiting cases (small or large diffusion coefficient), they strongly deviate from the numerical solution for intermediate values of the diffusion coefficient.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.80.046701</identifier><identifier>PMID: 19905476</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Capillaries - cytology ; Cells, Cultured - cytology ; Computer Simulation ; Electromagnetic Fields ; Image Interpretation, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Models, Biological</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2009-10, Vol.80 (4 Pt 2), p.046701-046701, Article 046701</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c232t-20647803958fd4b93076f1613c6eaa50987b896455a0ff72ae598695275a2443</citedby><cites>FETCH-LOGICAL-c232t-20647803958fd4b93076f1613c6eaa50987b896455a0ff72ae598695275a2443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19905476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ziener, C H</creatorcontrib><creatorcontrib>Glutsch, S</creatorcontrib><creatorcontrib>Jakob, P M</creatorcontrib><creatorcontrib>Bauer, W R</creatorcontrib><title>Spin dephasing in the dipole field around capillaries and cells: numerical solution</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We numerically solve the Bloch-Torrey equation by discretizing the differential operators in real space using finite differences. The differential equation is either solved directly in time domain as initial-value problem or in frequency domain as boundary-value problem. Especially the solution in time domain is highly efficient and suitable for arbitrary domains and dimensions. As examples, we calculate the average magnetization and the frequency distribution for capillaries and cells which are idealized as cylinders and spheres, respectively. The solution is compared with the commonly used Gaussian approximation and the strong-collision approximation. While these approximations become exact in limiting cases (small or large diffusion coefficient), they strongly deviate from the numerical solution for intermediate values of the diffusion coefficient.</description><subject>Algorithms</subject><subject>Capillaries - cytology</subject><subject>Cells, Cultured - cytology</subject><subject>Computer Simulation</subject><subject>Electromagnetic Fields</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Biological</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEtLAzEUhYMotlb_gAvJztXUm3fiTqQ-oKDY7od0JmMjmYfJjNB_b4dWXN1z4JzD5UPomsCcEGB379td-nA_i7mGOXCpgJygKRECMsqUPB01MxlTQkzQRUpfAIwyzc_RhBgDgis5RatV5xtcum5rk28-8d70W4dL37XB4cq7UGIb26EpcWE7H4KN3iVsR-9CSPe4GWoXfWEDTm0Yet82l-issiG5q-OdofXTYv34ki3fnl8fH5ZZQRntMwqSKw3MCF2VfGMYKFkRSVghnbUCjFYbbSQXwkJVKWqdMFoaQZWwlHM2Q7eH2S6234NLfV77ND5lG9cOKVeMEyaJIvskPSSL2KYUXZV30dc27nIC-Ygy_0OZa8gPKPelm-P8sKld-V85smO_tCJwEw</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Ziener, C H</creator><creator>Glutsch, S</creator><creator>Jakob, P M</creator><creator>Bauer, W R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200910</creationdate><title>Spin dephasing in the dipole field around capillaries and cells: numerical solution</title><author>Ziener, C H ; Glutsch, S ; Jakob, P M ; Bauer, W R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-20647803958fd4b93076f1613c6eaa50987b896455a0ff72ae598695275a2443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Capillaries - cytology</topic><topic>Cells, Cultured - cytology</topic><topic>Computer Simulation</topic><topic>Electromagnetic Fields</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Biological</topic><toplevel>online_resources</toplevel><creatorcontrib>Ziener, C H</creatorcontrib><creatorcontrib>Glutsch, S</creatorcontrib><creatorcontrib>Jakob, P M</creatorcontrib><creatorcontrib>Bauer, W R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziener, C H</au><au>Glutsch, S</au><au>Jakob, P M</au><au>Bauer, W R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin dephasing in the dipole field around capillaries and cells: numerical solution</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2009-10</date><risdate>2009</risdate><volume>80</volume><issue>4 Pt 2</issue><spage>046701</spage><epage>046701</epage><pages>046701-046701</pages><artnum>046701</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We numerically solve the Bloch-Torrey equation by discretizing the differential operators in real space using finite differences. The differential equation is either solved directly in time domain as initial-value problem or in frequency domain as boundary-value problem. Especially the solution in time domain is highly efficient and suitable for arbitrary domains and dimensions. As examples, we calculate the average magnetization and the frequency distribution for capillaries and cells which are idealized as cylinders and spheres, respectively. The solution is compared with the commonly used Gaussian approximation and the strong-collision approximation. While these approximations become exact in limiting cases (small or large diffusion coefficient), they strongly deviate from the numerical solution for intermediate values of the diffusion coefficient.</abstract><cop>United States</cop><pmid>19905476</pmid><doi>10.1103/PhysRevE.80.046701</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2009-10, Vol.80 (4 Pt 2), p.046701-046701, Article 046701 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_734136171 |
source | MEDLINE; American Physical Society Journals |
subjects | Algorithms Capillaries - cytology Cells, Cultured - cytology Computer Simulation Electromagnetic Fields Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging - methods Models, Biological |
title | Spin dephasing in the dipole field around capillaries and cells: numerical solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20dephasing%20in%20the%20dipole%20field%20around%20capillaries%20and%20cells:%20numerical%20solution&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Ziener,%20C%20H&rft.date=2009-10&rft.volume=80&rft.issue=4%20Pt%202&rft.spage=046701&rft.epage=046701&rft.pages=046701-046701&rft.artnum=046701&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.80.046701&rft_dat=%3Cproquest_cross%3E734136171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734136171&rft_id=info:pmid/19905476&rfr_iscdi=true |