Spin dephasing in the dipole field around capillaries and cells: numerical solution

We numerically solve the Bloch-Torrey equation by discretizing the differential operators in real space using finite differences. The differential equation is either solved directly in time domain as initial-value problem or in frequency domain as boundary-value problem. Especially the solution in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2009-10, Vol.80 (4 Pt 2), p.046701-046701, Article 046701
Hauptverfasser: Ziener, C H, Glutsch, S, Jakob, P M, Bauer, W R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 046701
container_issue 4 Pt 2
container_start_page 046701
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 80
creator Ziener, C H
Glutsch, S
Jakob, P M
Bauer, W R
description We numerically solve the Bloch-Torrey equation by discretizing the differential operators in real space using finite differences. The differential equation is either solved directly in time domain as initial-value problem or in frequency domain as boundary-value problem. Especially the solution in time domain is highly efficient and suitable for arbitrary domains and dimensions. As examples, we calculate the average magnetization and the frequency distribution for capillaries and cells which are idealized as cylinders and spheres, respectively. The solution is compared with the commonly used Gaussian approximation and the strong-collision approximation. While these approximations become exact in limiting cases (small or large diffusion coefficient), they strongly deviate from the numerical solution for intermediate values of the diffusion coefficient.
doi_str_mv 10.1103/PhysRevE.80.046701
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734136171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734136171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-20647803958fd4b93076f1613c6eaa50987b896455a0ff72ae598695275a2443</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMotlb_gAvJztXUm3fiTqQ-oKDY7od0JmMjmYfJjNB_b4dWXN1z4JzD5UPomsCcEGB379td-nA_i7mGOXCpgJygKRECMsqUPB01MxlTQkzQRUpfAIwyzc_RhBgDgis5RatV5xtcum5rk28-8d70W4dL37XB4cq7UGIb26EpcWE7H4KN3iVsR-9CSPe4GWoXfWEDTm0Yet82l-issiG5q-OdofXTYv34ki3fnl8fH5ZZQRntMwqSKw3MCF2VfGMYKFkRSVghnbUCjFYbbSQXwkJVKWqdMFoaQZWwlHM2Q7eH2S6234NLfV77ND5lG9cOKVeMEyaJIvskPSSL2KYUXZV30dc27nIC-Ygy_0OZa8gPKPelm-P8sKld-V85smO_tCJwEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734136171</pqid></control><display><type>article</type><title>Spin dephasing in the dipole field around capillaries and cells: numerical solution</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Ziener, C H ; Glutsch, S ; Jakob, P M ; Bauer, W R</creator><creatorcontrib>Ziener, C H ; Glutsch, S ; Jakob, P M ; Bauer, W R</creatorcontrib><description>We numerically solve the Bloch-Torrey equation by discretizing the differential operators in real space using finite differences. The differential equation is either solved directly in time domain as initial-value problem or in frequency domain as boundary-value problem. Especially the solution in time domain is highly efficient and suitable for arbitrary domains and dimensions. As examples, we calculate the average magnetization and the frequency distribution for capillaries and cells which are idealized as cylinders and spheres, respectively. The solution is compared with the commonly used Gaussian approximation and the strong-collision approximation. While these approximations become exact in limiting cases (small or large diffusion coefficient), they strongly deviate from the numerical solution for intermediate values of the diffusion coefficient.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.80.046701</identifier><identifier>PMID: 19905476</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Capillaries - cytology ; Cells, Cultured - cytology ; Computer Simulation ; Electromagnetic Fields ; Image Interpretation, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Models, Biological</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2009-10, Vol.80 (4 Pt 2), p.046701-046701, Article 046701</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c232t-20647803958fd4b93076f1613c6eaa50987b896455a0ff72ae598695275a2443</citedby><cites>FETCH-LOGICAL-c232t-20647803958fd4b93076f1613c6eaa50987b896455a0ff72ae598695275a2443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19905476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ziener, C H</creatorcontrib><creatorcontrib>Glutsch, S</creatorcontrib><creatorcontrib>Jakob, P M</creatorcontrib><creatorcontrib>Bauer, W R</creatorcontrib><title>Spin dephasing in the dipole field around capillaries and cells: numerical solution</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We numerically solve the Bloch-Torrey equation by discretizing the differential operators in real space using finite differences. The differential equation is either solved directly in time domain as initial-value problem or in frequency domain as boundary-value problem. Especially the solution in time domain is highly efficient and suitable for arbitrary domains and dimensions. As examples, we calculate the average magnetization and the frequency distribution for capillaries and cells which are idealized as cylinders and spheres, respectively. The solution is compared with the commonly used Gaussian approximation and the strong-collision approximation. While these approximations become exact in limiting cases (small or large diffusion coefficient), they strongly deviate from the numerical solution for intermediate values of the diffusion coefficient.</description><subject>Algorithms</subject><subject>Capillaries - cytology</subject><subject>Cells, Cultured - cytology</subject><subject>Computer Simulation</subject><subject>Electromagnetic Fields</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Biological</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEtLAzEUhYMotlb_gAvJztXUm3fiTqQ-oKDY7od0JmMjmYfJjNB_b4dWXN1z4JzD5UPomsCcEGB379td-nA_i7mGOXCpgJygKRECMsqUPB01MxlTQkzQRUpfAIwyzc_RhBgDgis5RatV5xtcum5rk28-8d70W4dL37XB4cq7UGIb26EpcWE7H4KN3iVsR-9CSPe4GWoXfWEDTm0Yet82l-issiG5q-OdofXTYv34ki3fnl8fH5ZZQRntMwqSKw3MCF2VfGMYKFkRSVghnbUCjFYbbSQXwkJVKWqdMFoaQZWwlHM2Q7eH2S6234NLfV77ND5lG9cOKVeMEyaJIvskPSSL2KYUXZV30dc27nIC-Ygy_0OZa8gPKPelm-P8sKld-V85smO_tCJwEw</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Ziener, C H</creator><creator>Glutsch, S</creator><creator>Jakob, P M</creator><creator>Bauer, W R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200910</creationdate><title>Spin dephasing in the dipole field around capillaries and cells: numerical solution</title><author>Ziener, C H ; Glutsch, S ; Jakob, P M ; Bauer, W R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-20647803958fd4b93076f1613c6eaa50987b896455a0ff72ae598695275a2443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Capillaries - cytology</topic><topic>Cells, Cultured - cytology</topic><topic>Computer Simulation</topic><topic>Electromagnetic Fields</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Biological</topic><toplevel>online_resources</toplevel><creatorcontrib>Ziener, C H</creatorcontrib><creatorcontrib>Glutsch, S</creatorcontrib><creatorcontrib>Jakob, P M</creatorcontrib><creatorcontrib>Bauer, W R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziener, C H</au><au>Glutsch, S</au><au>Jakob, P M</au><au>Bauer, W R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin dephasing in the dipole field around capillaries and cells: numerical solution</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2009-10</date><risdate>2009</risdate><volume>80</volume><issue>4 Pt 2</issue><spage>046701</spage><epage>046701</epage><pages>046701-046701</pages><artnum>046701</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We numerically solve the Bloch-Torrey equation by discretizing the differential operators in real space using finite differences. The differential equation is either solved directly in time domain as initial-value problem or in frequency domain as boundary-value problem. Especially the solution in time domain is highly efficient and suitable for arbitrary domains and dimensions. As examples, we calculate the average magnetization and the frequency distribution for capillaries and cells which are idealized as cylinders and spheres, respectively. The solution is compared with the commonly used Gaussian approximation and the strong-collision approximation. While these approximations become exact in limiting cases (small or large diffusion coefficient), they strongly deviate from the numerical solution for intermediate values of the diffusion coefficient.</abstract><cop>United States</cop><pmid>19905476</pmid><doi>10.1103/PhysRevE.80.046701</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2009-10, Vol.80 (4 Pt 2), p.046701-046701, Article 046701
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_734136171
source MEDLINE; American Physical Society Journals
subjects Algorithms
Capillaries - cytology
Cells, Cultured - cytology
Computer Simulation
Electromagnetic Fields
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Models, Biological
title Spin dephasing in the dipole field around capillaries and cells: numerical solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20dephasing%20in%20the%20dipole%20field%20around%20capillaries%20and%20cells:%20numerical%20solution&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Ziener,%20C%20H&rft.date=2009-10&rft.volume=80&rft.issue=4%20Pt%202&rft.spage=046701&rft.epage=046701&rft.pages=046701-046701&rft.artnum=046701&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.80.046701&rft_dat=%3Cproquest_cross%3E734136171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734136171&rft_id=info:pmid/19905476&rfr_iscdi=true