Drosophila Cip4/Toca-1 Integrates Membrane Trafficking and Actin Dynamics through WASP and SCAR/WAVE

Developmental processes are intimately tied to signaling events that integrate the dynamic reorganization of the actin cytoskeleton and membrane dynamics. The F-BAR-domain-containing proteins are prime candidates to couple actin dynamics and membrane trafficking in different morphogenetic processes....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2009-09, Vol.19 (17), p.1429-1437
Hauptverfasser: Fricke, Robert, Gohl, Christina, Dharmalingam, Elavarasi, Grevelhörster, Astrid, Zahedi, Baharak, Harden, Nicholas, Kessels, Michael, Qualmann, Britta, Bogdan, Sven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1437
container_issue 17
container_start_page 1429
container_title Current biology
container_volume 19
creator Fricke, Robert
Gohl, Christina
Dharmalingam, Elavarasi
Grevelhörster, Astrid
Zahedi, Baharak
Harden, Nicholas
Kessels, Michael
Qualmann, Britta
Bogdan, Sven
description Developmental processes are intimately tied to signaling events that integrate the dynamic reorganization of the actin cytoskeleton and membrane dynamics. The F-BAR-domain-containing proteins are prime candidates to couple actin dynamics and membrane trafficking in different morphogenetic processes. Here, we present the functional analysis of the Drosophila F-BAR protein Cip4/Toca1 (Cdc42-interacting protein 4/transducer of Cdc42-dependent actin assembly 1). Cip4 is able to form a complex with WASP and SCAR/WAVE and recruits both actin-nucleation-promoting factors to invaginating membranes and endocytic vesicles. Actin-comet-tail-based movement of these vesicles depends not only on WASP but largely on WAVE function. In vivo, loss of cip4 function causes multiple wing hairs. A similar phenotype is observed when vesicle scission is affected after Dynamin suppression. Gene dosage experiments show that Cip4 and WAVE functionally interact to restrict wing hair formation. Further rescue experiments confirm that Cip4 is able to act through WAVE and WASP in vivo. Biochemical and functional data support a model in which Cdc42 acts upstream of Cip4 and recruits not only WASP but also SCAR/WAVE via Abi to control Dynamin-dependent cell polarization in the wing. Cip4 integrates membrane trafficking and actin dynamics through WASP and WAVE. First, Cip4 promotes membrane invaginations and triggers the vesicle scission by recruiting Dynamin to the neck of nascent vesicles. Second, Cip4 recruits WASP and WAVE proteins to induce actin polymerization, supporting vesicle scission and providing the force for vesicle movement.
doi_str_mv 10.1016/j.cub.2009.07.058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734134545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982209014845</els_id><sourcerecordid>734134545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-ed82dfb133c3525f16240a96faf8b196212e5b16286b7c22573a37e08ac7c7913</originalsourceid><addsrcrecordid>eNp9kM1u2zAQhImiQeO6eYBeCt56kswfURTRk-A4TYAECRI3PhIUtbLpWpJDSgH89mFiA731tMDuzGDnQ-g7JSklNJ9tUztWKSNEpUSmRBSf0IQWUiUky8RnNCEqJ4kqGDtHX0PYEkJZofIv6JwqSXNJ-ATVl74P_X7jdgbP3T6bLXtrEopvugHW3gwQ8B20lTcd4KU3TePsX9etselqXNrBdfjy0JnW2YCHje_H9QavyqeHj_vTvHycrcrnxTd01phdgIvTnKI_V4vl_Dq5vf99My9vE8uVGBKoC1Y3FeXccsFEQ3OWEaPyxjRFRVXOKANRxW2RV9IyJiQ3XAIpjJVWKsqn6Ocxd-_7lxHCoFsXLOx28ft-DFryjPJMZCIq6VFpY_3godF771rjD5oS_c5Wb3Vkq9_ZaiJ1ZBs9P07pY9VC_c9xghkFv44CiB1fHXgdrIPOQu082EHXvftP_BsLEIe0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734134545</pqid></control><display><type>article</type><title>Drosophila Cip4/Toca-1 Integrates Membrane Trafficking and Actin Dynamics through WASP and SCAR/WAVE</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fricke, Robert ; Gohl, Christina ; Dharmalingam, Elavarasi ; Grevelhörster, Astrid ; Zahedi, Baharak ; Harden, Nicholas ; Kessels, Michael ; Qualmann, Britta ; Bogdan, Sven</creator><creatorcontrib>Fricke, Robert ; Gohl, Christina ; Dharmalingam, Elavarasi ; Grevelhörster, Astrid ; Zahedi, Baharak ; Harden, Nicholas ; Kessels, Michael ; Qualmann, Britta ; Bogdan, Sven</creatorcontrib><description>Developmental processes are intimately tied to signaling events that integrate the dynamic reorganization of the actin cytoskeleton and membrane dynamics. The F-BAR-domain-containing proteins are prime candidates to couple actin dynamics and membrane trafficking in different morphogenetic processes. Here, we present the functional analysis of the Drosophila F-BAR protein Cip4/Toca1 (Cdc42-interacting protein 4/transducer of Cdc42-dependent actin assembly 1). Cip4 is able to form a complex with WASP and SCAR/WAVE and recruits both actin-nucleation-promoting factors to invaginating membranes and endocytic vesicles. Actin-comet-tail-based movement of these vesicles depends not only on WASP but largely on WAVE function. In vivo, loss of cip4 function causes multiple wing hairs. A similar phenotype is observed when vesicle scission is affected after Dynamin suppression. Gene dosage experiments show that Cip4 and WAVE functionally interact to restrict wing hair formation. Further rescue experiments confirm that Cip4 is able to act through WAVE and WASP in vivo. Biochemical and functional data support a model in which Cdc42 acts upstream of Cip4 and recruits not only WASP but also SCAR/WAVE via Abi to control Dynamin-dependent cell polarization in the wing. Cip4 integrates membrane trafficking and actin dynamics through WASP and WAVE. First, Cip4 promotes membrane invaginations and triggers the vesicle scission by recruiting Dynamin to the neck of nascent vesicles. Second, Cip4 recruits WASP and WAVE proteins to induce actin polymerization, supporting vesicle scission and providing the force for vesicle movement.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2009.07.058</identifier><identifier>PMID: 19716703</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Actins - metabolism ; Actins - physiology ; Animals ; Biological Transport ; Body Patterning ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Carrier Proteins - physiology ; CELLBIO ; Drosophila - cytology ; Drosophila - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Drosophila Proteins - physiology ; Dynamins - metabolism ; Dynamins - physiology ; Endocytosis ; Endosomes - metabolism ; Endosomes - physiology ; Gene Dosage ; GTP-Binding Proteins - metabolism ; GTP-Binding Proteins - physiology ; Microfilament Proteins - metabolism ; Models, Biological ; Wings, Animal - anatomy &amp; histology ; Wings, Animal - growth &amp; development ; Wiskott-Aldrich Syndrome Protein - metabolism</subject><ispartof>Current biology, 2009-09, Vol.19 (17), p.1429-1437</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-ed82dfb133c3525f16240a96faf8b196212e5b16286b7c22573a37e08ac7c7913</citedby><cites>FETCH-LOGICAL-c395t-ed82dfb133c3525f16240a96faf8b196212e5b16286b7c22573a37e08ac7c7913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982209014845$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19716703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fricke, Robert</creatorcontrib><creatorcontrib>Gohl, Christina</creatorcontrib><creatorcontrib>Dharmalingam, Elavarasi</creatorcontrib><creatorcontrib>Grevelhörster, Astrid</creatorcontrib><creatorcontrib>Zahedi, Baharak</creatorcontrib><creatorcontrib>Harden, Nicholas</creatorcontrib><creatorcontrib>Kessels, Michael</creatorcontrib><creatorcontrib>Qualmann, Britta</creatorcontrib><creatorcontrib>Bogdan, Sven</creatorcontrib><title>Drosophila Cip4/Toca-1 Integrates Membrane Trafficking and Actin Dynamics through WASP and SCAR/WAVE</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Developmental processes are intimately tied to signaling events that integrate the dynamic reorganization of the actin cytoskeleton and membrane dynamics. The F-BAR-domain-containing proteins are prime candidates to couple actin dynamics and membrane trafficking in different morphogenetic processes. Here, we present the functional analysis of the Drosophila F-BAR protein Cip4/Toca1 (Cdc42-interacting protein 4/transducer of Cdc42-dependent actin assembly 1). Cip4 is able to form a complex with WASP and SCAR/WAVE and recruits both actin-nucleation-promoting factors to invaginating membranes and endocytic vesicles. Actin-comet-tail-based movement of these vesicles depends not only on WASP but largely on WAVE function. In vivo, loss of cip4 function causes multiple wing hairs. A similar phenotype is observed when vesicle scission is affected after Dynamin suppression. Gene dosage experiments show that Cip4 and WAVE functionally interact to restrict wing hair formation. Further rescue experiments confirm that Cip4 is able to act through WAVE and WASP in vivo. Biochemical and functional data support a model in which Cdc42 acts upstream of Cip4 and recruits not only WASP but also SCAR/WAVE via Abi to control Dynamin-dependent cell polarization in the wing. Cip4 integrates membrane trafficking and actin dynamics through WASP and WAVE. First, Cip4 promotes membrane invaginations and triggers the vesicle scission by recruiting Dynamin to the neck of nascent vesicles. Second, Cip4 recruits WASP and WAVE proteins to induce actin polymerization, supporting vesicle scission and providing the force for vesicle movement.</description><subject>Actins - metabolism</subject><subject>Actins - physiology</subject><subject>Animals</subject><subject>Biological Transport</subject><subject>Body Patterning</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Carrier Proteins - physiology</subject><subject>CELLBIO</subject><subject>Drosophila - cytology</subject><subject>Drosophila - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Drosophila Proteins - physiology</subject><subject>Dynamins - metabolism</subject><subject>Dynamins - physiology</subject><subject>Endocytosis</subject><subject>Endosomes - metabolism</subject><subject>Endosomes - physiology</subject><subject>Gene Dosage</subject><subject>GTP-Binding Proteins - metabolism</subject><subject>GTP-Binding Proteins - physiology</subject><subject>Microfilament Proteins - metabolism</subject><subject>Models, Biological</subject><subject>Wings, Animal - anatomy &amp; histology</subject><subject>Wings, Animal - growth &amp; development</subject><subject>Wiskott-Aldrich Syndrome Protein - metabolism</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1u2zAQhImiQeO6eYBeCt56kswfURTRk-A4TYAECRI3PhIUtbLpWpJDSgH89mFiA731tMDuzGDnQ-g7JSklNJ9tUztWKSNEpUSmRBSf0IQWUiUky8RnNCEqJ4kqGDtHX0PYEkJZofIv6JwqSXNJ-ATVl74P_X7jdgbP3T6bLXtrEopvugHW3gwQ8B20lTcd4KU3TePsX9etselqXNrBdfjy0JnW2YCHje_H9QavyqeHj_vTvHycrcrnxTd01phdgIvTnKI_V4vl_Dq5vf99My9vE8uVGBKoC1Y3FeXccsFEQ3OWEaPyxjRFRVXOKANRxW2RV9IyJiQ3XAIpjJVWKsqn6Ocxd-_7lxHCoFsXLOx28ft-DFryjPJMZCIq6VFpY_3godF771rjD5oS_c5Wb3Vkq9_ZaiJ1ZBs9P07pY9VC_c9xghkFv44CiB1fHXgdrIPOQu082EHXvftP_BsLEIe0</recordid><startdate>20090915</startdate><enddate>20090915</enddate><creator>Fricke, Robert</creator><creator>Gohl, Christina</creator><creator>Dharmalingam, Elavarasi</creator><creator>Grevelhörster, Astrid</creator><creator>Zahedi, Baharak</creator><creator>Harden, Nicholas</creator><creator>Kessels, Michael</creator><creator>Qualmann, Britta</creator><creator>Bogdan, Sven</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090915</creationdate><title>Drosophila Cip4/Toca-1 Integrates Membrane Trafficking and Actin Dynamics through WASP and SCAR/WAVE</title><author>Fricke, Robert ; Gohl, Christina ; Dharmalingam, Elavarasi ; Grevelhörster, Astrid ; Zahedi, Baharak ; Harden, Nicholas ; Kessels, Michael ; Qualmann, Britta ; Bogdan, Sven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-ed82dfb133c3525f16240a96faf8b196212e5b16286b7c22573a37e08ac7c7913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Actins - metabolism</topic><topic>Actins - physiology</topic><topic>Animals</topic><topic>Biological Transport</topic><topic>Body Patterning</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Carrier Proteins - physiology</topic><topic>CELLBIO</topic><topic>Drosophila - cytology</topic><topic>Drosophila - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Drosophila Proteins - physiology</topic><topic>Dynamins - metabolism</topic><topic>Dynamins - physiology</topic><topic>Endocytosis</topic><topic>Endosomes - metabolism</topic><topic>Endosomes - physiology</topic><topic>Gene Dosage</topic><topic>GTP-Binding Proteins - metabolism</topic><topic>GTP-Binding Proteins - physiology</topic><topic>Microfilament Proteins - metabolism</topic><topic>Models, Biological</topic><topic>Wings, Animal - anatomy &amp; histology</topic><topic>Wings, Animal - growth &amp; development</topic><topic>Wiskott-Aldrich Syndrome Protein - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fricke, Robert</creatorcontrib><creatorcontrib>Gohl, Christina</creatorcontrib><creatorcontrib>Dharmalingam, Elavarasi</creatorcontrib><creatorcontrib>Grevelhörster, Astrid</creatorcontrib><creatorcontrib>Zahedi, Baharak</creatorcontrib><creatorcontrib>Harden, Nicholas</creatorcontrib><creatorcontrib>Kessels, Michael</creatorcontrib><creatorcontrib>Qualmann, Britta</creatorcontrib><creatorcontrib>Bogdan, Sven</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fricke, Robert</au><au>Gohl, Christina</au><au>Dharmalingam, Elavarasi</au><au>Grevelhörster, Astrid</au><au>Zahedi, Baharak</au><au>Harden, Nicholas</au><au>Kessels, Michael</au><au>Qualmann, Britta</au><au>Bogdan, Sven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drosophila Cip4/Toca-1 Integrates Membrane Trafficking and Actin Dynamics through WASP and SCAR/WAVE</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2009-09-15</date><risdate>2009</risdate><volume>19</volume><issue>17</issue><spage>1429</spage><epage>1437</epage><pages>1429-1437</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Developmental processes are intimately tied to signaling events that integrate the dynamic reorganization of the actin cytoskeleton and membrane dynamics. The F-BAR-domain-containing proteins are prime candidates to couple actin dynamics and membrane trafficking in different morphogenetic processes. Here, we present the functional analysis of the Drosophila F-BAR protein Cip4/Toca1 (Cdc42-interacting protein 4/transducer of Cdc42-dependent actin assembly 1). Cip4 is able to form a complex with WASP and SCAR/WAVE and recruits both actin-nucleation-promoting factors to invaginating membranes and endocytic vesicles. Actin-comet-tail-based movement of these vesicles depends not only on WASP but largely on WAVE function. In vivo, loss of cip4 function causes multiple wing hairs. A similar phenotype is observed when vesicle scission is affected after Dynamin suppression. Gene dosage experiments show that Cip4 and WAVE functionally interact to restrict wing hair formation. Further rescue experiments confirm that Cip4 is able to act through WAVE and WASP in vivo. Biochemical and functional data support a model in which Cdc42 acts upstream of Cip4 and recruits not only WASP but also SCAR/WAVE via Abi to control Dynamin-dependent cell polarization in the wing. Cip4 integrates membrane trafficking and actin dynamics through WASP and WAVE. First, Cip4 promotes membrane invaginations and triggers the vesicle scission by recruiting Dynamin to the neck of nascent vesicles. Second, Cip4 recruits WASP and WAVE proteins to induce actin polymerization, supporting vesicle scission and providing the force for vesicle movement.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>19716703</pmid><doi>10.1016/j.cub.2009.07.058</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2009-09, Vol.19 (17), p.1429-1437
issn 0960-9822
1879-0445
language eng
recordid cdi_proquest_miscellaneous_734134545
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Actins - metabolism
Actins - physiology
Animals
Biological Transport
Body Patterning
Carrier Proteins - genetics
Carrier Proteins - metabolism
Carrier Proteins - physiology
CELLBIO
Drosophila - cytology
Drosophila - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Drosophila Proteins - physiology
Dynamins - metabolism
Dynamins - physiology
Endocytosis
Endosomes - metabolism
Endosomes - physiology
Gene Dosage
GTP-Binding Proteins - metabolism
GTP-Binding Proteins - physiology
Microfilament Proteins - metabolism
Models, Biological
Wings, Animal - anatomy & histology
Wings, Animal - growth & development
Wiskott-Aldrich Syndrome Protein - metabolism
title Drosophila Cip4/Toca-1 Integrates Membrane Trafficking and Actin Dynamics through WASP and SCAR/WAVE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drosophila%20Cip4/Toca-1%20Integrates%20Membrane%20Trafficking%20and%20Actin%20Dynamics%20through%20WASP%20and%20SCAR/WAVE&rft.jtitle=Current%20biology&rft.au=Fricke,%20Robert&rft.date=2009-09-15&rft.volume=19&rft.issue=17&rft.spage=1429&rft.epage=1437&rft.pages=1429-1437&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2009.07.058&rft_dat=%3Cproquest_cross%3E734134545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734134545&rft_id=info:pmid/19716703&rft_els_id=S0960982209014845&rfr_iscdi=true