Self-assembly of soft nanoparticles with tunable patchiness

Details of the forces between nanoparticles determine the ways in which the nanoparticles can self-assemble into larger structures. The use of directed interactions has led to new concepts in self-assembly such as asymmetric dendrons 1 , 2 , Janus particles 3 , patchy colloids 4 , 5 , 6 and colloida...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2009-11, Vol.4 (11), p.721-726
Hauptverfasser: Meijer, E. W, Hermans, Thomas M, Broeren, Maarten A. C, Gomopoulos, Nikos, van der Schoot, Paul, van Genderen, Marcel H. P, Sommerdijk, Nico A. J. M, Fytas, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 726
container_issue 11
container_start_page 721
container_title Nature nanotechnology
container_volume 4
creator Meijer, E. W
Hermans, Thomas M
Broeren, Maarten A. C
Gomopoulos, Nikos
van der Schoot, Paul
van Genderen, Marcel H. P
Sommerdijk, Nico A. J. M
Fytas, George
description Details of the forces between nanoparticles determine the ways in which the nanoparticles can self-assemble into larger structures. The use of directed interactions has led to new concepts in self-assembly such as asymmetric dendrons 1 , 2 , Janus particles 3 , patchy colloids 4 , 5 , 6 and colloidal molecules 7 . Recent models that include attractive regions or ‘patches’ on the surface of the nanoparticles predict a wealth of intricate modes of assembly 8 , 9 , 10 , 11 , 12 . Interactions between such particles are also important in a range of phenomena including protein aggregation 13 , 14 and crystallization 15 , re-entrant phase transitions 16 , 17 , 18 , assembly of nanoemulsions 19 and the organization of nanoparticles into nanowires 20 . Here, we report the synthesis of 6-nm nanoparticles with dynamic hydrophobic patches and show that they can form reversible self-assembled structures in aqueous solution that become topologically more connected upon dilution. The organization is based on guest–host supramolecular chemistry with the nanoparticles composed of a hydrophobic dendrimer host molecule and water-soluble hydrophilic guest molecules. The work demonstrates that subtle changes in hierarchal composition and/or concentration can dramatically change mesoscopic ordering. Nanoparticles with dynamic patches can form reversible self-assembled structures in aqueous solution that become topologically more connected on dilution.
doi_str_mv 10.1038/nnano.2009.232
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734131696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734131696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-cb422822d1ae45872a673c2ae5e95360f84248c753dc979c53a849ac2549d3e63</originalsourceid><addsrcrecordid>eNp1kE1LwzAYgIMobk6vHqWo4KlbPpsETzL8goEH9Ryy7K3r6NKZtMj-va0bEwY7JZDnffLyIHRJ8JBgpkbeW18NKcZ6SBk9Qn0iuUoZ0-J4d1eyh85iXGAsqKb8FPWIVpoJwvvo_h3KPLUxwnJarpMqT2KV10lnXdlQF66EmPwU9TypG2-nJSQrW7t54SHGc3SS2zLCxfYcoM-nx4_xSzp5e34dP0xSx4mqUzfllCpKZ8QCF0pSm0nmqAUBWrAM54pTrpwUbOa01E4wq7i2jgquZwwyNkB3G-8qVN8NxNosi-igLK2HqolGMk4YyXRHXu-Ri6oJvl3OqExJhTNNW-jmEES5zCRvy6iWGm4oF6oYA-RmFYqlDWtDsOnSm7_0pktv2vTtwNVW20yXMPvHt61bYLQBYvvkvyD8_3tQebuZ8LZuAuyUe9gvHTyZ8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476743518</pqid></control><display><type>article</type><title>Self-assembly of soft nanoparticles with tunable patchiness</title><source>Nature Journals</source><source>Alma/SFX Local Collection</source><creator>Meijer, E. W ; Hermans, Thomas M ; Broeren, Maarten A. C ; Gomopoulos, Nikos ; van der Schoot, Paul ; van Genderen, Marcel H. P ; Sommerdijk, Nico A. J. M ; Fytas, George</creator><creatorcontrib>Meijer, E. W ; Hermans, Thomas M ; Broeren, Maarten A. C ; Gomopoulos, Nikos ; van der Schoot, Paul ; van Genderen, Marcel H. P ; Sommerdijk, Nico A. J. M ; Fytas, George</creatorcontrib><description>Details of the forces between nanoparticles determine the ways in which the nanoparticles can self-assemble into larger structures. The use of directed interactions has led to new concepts in self-assembly such as asymmetric dendrons 1 , 2 , Janus particles 3 , patchy colloids 4 , 5 , 6 and colloidal molecules 7 . Recent models that include attractive regions or ‘patches’ on the surface of the nanoparticles predict a wealth of intricate modes of assembly 8 , 9 , 10 , 11 , 12 . Interactions between such particles are also important in a range of phenomena including protein aggregation 13 , 14 and crystallization 15 , re-entrant phase transitions 16 , 17 , 18 , assembly of nanoemulsions 19 and the organization of nanoparticles into nanowires 20 . Here, we report the synthesis of 6-nm nanoparticles with dynamic hydrophobic patches and show that they can form reversible self-assembled structures in aqueous solution that become topologically more connected upon dilution. The organization is based on guest–host supramolecular chemistry with the nanoparticles composed of a hydrophobic dendrimer host molecule and water-soluble hydrophilic guest molecules. The work demonstrates that subtle changes in hierarchal composition and/or concentration can dramatically change mesoscopic ordering. Nanoparticles with dynamic patches can form reversible self-assembled structures in aqueous solution that become topologically more connected on dilution.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2009.232</identifier><identifier>PMID: 19893514</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Aqueous solutions ; Binding sites ; Chemistry and Materials Science ; Colloids ; Crystallization ; Dilution ; Hydrophobicity ; letter ; Materials Science ; Nanoparticles ; Nanotechnology ; Nanotechnology and Microengineering ; NMR ; Nuclear magnetic resonance ; Patches (structures) ; Phase transitions ; Self-assembly ; Specialty products ; Viscosity</subject><ispartof>Nature nanotechnology, 2009-11, Vol.4 (11), p.721-726</ispartof><rights>Springer Nature Limited 2009</rights><rights>Nature Publishing Group 2009.</rights><rights>Copyright Nature Publishing Group Nov 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-cb422822d1ae45872a673c2ae5e95360f84248c753dc979c53a849ac2549d3e63</citedby><cites>FETCH-LOGICAL-c418t-cb422822d1ae45872a673c2ae5e95360f84248c753dc979c53a849ac2549d3e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,2731,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19893514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meijer, E. W</creatorcontrib><creatorcontrib>Hermans, Thomas M</creatorcontrib><creatorcontrib>Broeren, Maarten A. C</creatorcontrib><creatorcontrib>Gomopoulos, Nikos</creatorcontrib><creatorcontrib>van der Schoot, Paul</creatorcontrib><creatorcontrib>van Genderen, Marcel H. P</creatorcontrib><creatorcontrib>Sommerdijk, Nico A. J. M</creatorcontrib><creatorcontrib>Fytas, George</creatorcontrib><title>Self-assembly of soft nanoparticles with tunable patchiness</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Details of the forces between nanoparticles determine the ways in which the nanoparticles can self-assemble into larger structures. The use of directed interactions has led to new concepts in self-assembly such as asymmetric dendrons 1 , 2 , Janus particles 3 , patchy colloids 4 , 5 , 6 and colloidal molecules 7 . Recent models that include attractive regions or ‘patches’ on the surface of the nanoparticles predict a wealth of intricate modes of assembly 8 , 9 , 10 , 11 , 12 . Interactions between such particles are also important in a range of phenomena including protein aggregation 13 , 14 and crystallization 15 , re-entrant phase transitions 16 , 17 , 18 , assembly of nanoemulsions 19 and the organization of nanoparticles into nanowires 20 . Here, we report the synthesis of 6-nm nanoparticles with dynamic hydrophobic patches and show that they can form reversible self-assembled structures in aqueous solution that become topologically more connected upon dilution. The organization is based on guest–host supramolecular chemistry with the nanoparticles composed of a hydrophobic dendrimer host molecule and water-soluble hydrophilic guest molecules. The work demonstrates that subtle changes in hierarchal composition and/or concentration can dramatically change mesoscopic ordering. Nanoparticles with dynamic patches can form reversible self-assembled structures in aqueous solution that become topologically more connected on dilution.</description><subject>Aqueous solutions</subject><subject>Binding sites</subject><subject>Chemistry and Materials Science</subject><subject>Colloids</subject><subject>Crystallization</subject><subject>Dilution</subject><subject>Hydrophobicity</subject><subject>letter</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Patches (structures)</subject><subject>Phase transitions</subject><subject>Self-assembly</subject><subject>Specialty products</subject><subject>Viscosity</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LwzAYgIMobk6vHqWo4KlbPpsETzL8goEH9Ryy7K3r6NKZtMj-va0bEwY7JZDnffLyIHRJ8JBgpkbeW18NKcZ6SBk9Qn0iuUoZ0-J4d1eyh85iXGAsqKb8FPWIVpoJwvvo_h3KPLUxwnJarpMqT2KV10lnXdlQF66EmPwU9TypG2-nJSQrW7t54SHGc3SS2zLCxfYcoM-nx4_xSzp5e34dP0xSx4mqUzfllCpKZ8QCF0pSm0nmqAUBWrAM54pTrpwUbOa01E4wq7i2jgquZwwyNkB3G-8qVN8NxNosi-igLK2HqolGMk4YyXRHXu-Ri6oJvl3OqExJhTNNW-jmEES5zCRvy6iWGm4oF6oYA-RmFYqlDWtDsOnSm7_0pktv2vTtwNVW20yXMPvHt61bYLQBYvvkvyD8_3tQebuZ8LZuAuyUe9gvHTyZ8A</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Meijer, E. W</creator><creator>Hermans, Thomas M</creator><creator>Broeren, Maarten A. C</creator><creator>Gomopoulos, Nikos</creator><creator>van der Schoot, Paul</creator><creator>van Genderen, Marcel H. P</creator><creator>Sommerdijk, Nico A. J. M</creator><creator>Fytas, George</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20091101</creationdate><title>Self-assembly of soft nanoparticles with tunable patchiness</title><author>Meijer, E. W ; Hermans, Thomas M ; Broeren, Maarten A. C ; Gomopoulos, Nikos ; van der Schoot, Paul ; van Genderen, Marcel H. P ; Sommerdijk, Nico A. J. M ; Fytas, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-cb422822d1ae45872a673c2ae5e95360f84248c753dc979c53a849ac2549d3e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aqueous solutions</topic><topic>Binding sites</topic><topic>Chemistry and Materials Science</topic><topic>Colloids</topic><topic>Crystallization</topic><topic>Dilution</topic><topic>Hydrophobicity</topic><topic>letter</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Patches (structures)</topic><topic>Phase transitions</topic><topic>Self-assembly</topic><topic>Specialty products</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meijer, E. W</creatorcontrib><creatorcontrib>Hermans, Thomas M</creatorcontrib><creatorcontrib>Broeren, Maarten A. C</creatorcontrib><creatorcontrib>Gomopoulos, Nikos</creatorcontrib><creatorcontrib>van der Schoot, Paul</creatorcontrib><creatorcontrib>van Genderen, Marcel H. P</creatorcontrib><creatorcontrib>Sommerdijk, Nico A. J. M</creatorcontrib><creatorcontrib>Fytas, George</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meijer, E. W</au><au>Hermans, Thomas M</au><au>Broeren, Maarten A. C</au><au>Gomopoulos, Nikos</au><au>van der Schoot, Paul</au><au>van Genderen, Marcel H. P</au><au>Sommerdijk, Nico A. J. M</au><au>Fytas, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-assembly of soft nanoparticles with tunable patchiness</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>4</volume><issue>11</issue><spage>721</spage><epage>726</epage><pages>721-726</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Details of the forces between nanoparticles determine the ways in which the nanoparticles can self-assemble into larger structures. The use of directed interactions has led to new concepts in self-assembly such as asymmetric dendrons 1 , 2 , Janus particles 3 , patchy colloids 4 , 5 , 6 and colloidal molecules 7 . Recent models that include attractive regions or ‘patches’ on the surface of the nanoparticles predict a wealth of intricate modes of assembly 8 , 9 , 10 , 11 , 12 . Interactions between such particles are also important in a range of phenomena including protein aggregation 13 , 14 and crystallization 15 , re-entrant phase transitions 16 , 17 , 18 , assembly of nanoemulsions 19 and the organization of nanoparticles into nanowires 20 . Here, we report the synthesis of 6-nm nanoparticles with dynamic hydrophobic patches and show that they can form reversible self-assembled structures in aqueous solution that become topologically more connected upon dilution. The organization is based on guest–host supramolecular chemistry with the nanoparticles composed of a hydrophobic dendrimer host molecule and water-soluble hydrophilic guest molecules. The work demonstrates that subtle changes in hierarchal composition and/or concentration can dramatically change mesoscopic ordering. Nanoparticles with dynamic patches can form reversible self-assembled structures in aqueous solution that become topologically more connected on dilution.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19893514</pmid><doi>10.1038/nnano.2009.232</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2009-11, Vol.4 (11), p.721-726
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_734131696
source Nature Journals; Alma/SFX Local Collection
subjects Aqueous solutions
Binding sites
Chemistry and Materials Science
Colloids
Crystallization
Dilution
Hydrophobicity
letter
Materials Science
Nanoparticles
Nanotechnology
Nanotechnology and Microengineering
NMR
Nuclear magnetic resonance
Patches (structures)
Phase transitions
Self-assembly
Specialty products
Viscosity
title Self-assembly of soft nanoparticles with tunable patchiness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T14%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-assembly%20of%20soft%20nanoparticles%20with%20tunable%20patchiness&rft.jtitle=Nature%20nanotechnology&rft.au=Meijer,%20E.%20W&rft.date=2009-11-01&rft.volume=4&rft.issue=11&rft.spage=721&rft.epage=726&rft.pages=721-726&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2009.232&rft_dat=%3Cproquest_cross%3E734131696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476743518&rft_id=info:pmid/19893514&rfr_iscdi=true