Self-assembly of soft nanoparticles with tunable patchiness
Details of the forces between nanoparticles determine the ways in which the nanoparticles can self-assemble into larger structures. The use of directed interactions has led to new concepts in self-assembly such as asymmetric dendrons 1 , 2 , Janus particles 3 , patchy colloids 4 , 5 , 6 and colloida...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2009-11, Vol.4 (11), p.721-726 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 726 |
---|---|
container_issue | 11 |
container_start_page | 721 |
container_title | Nature nanotechnology |
container_volume | 4 |
creator | Meijer, E. W Hermans, Thomas M Broeren, Maarten A. C Gomopoulos, Nikos van der Schoot, Paul van Genderen, Marcel H. P Sommerdijk, Nico A. J. M Fytas, George |
description | Details of the forces between nanoparticles determine the ways in which the nanoparticles can self-assemble into larger structures. The use of directed interactions has led to new concepts in self-assembly such as asymmetric dendrons
1
,
2
, Janus particles
3
, patchy colloids
4
,
5
,
6
and colloidal molecules
7
. Recent models that include attractive regions or ‘patches’ on the surface of the nanoparticles predict a wealth of intricate modes of assembly
8
,
9
,
10
,
11
,
12
. Interactions between such particles are also important in a range of phenomena including protein aggregation
13
,
14
and crystallization
15
, re-entrant phase transitions
16
,
17
,
18
, assembly of nanoemulsions
19
and the organization of nanoparticles into nanowires
20
. Here, we report the synthesis of 6-nm nanoparticles with dynamic hydrophobic patches and show that they can form reversible self-assembled structures in aqueous solution that become topologically more connected upon dilution. The organization is based on guest–host supramolecular chemistry with the nanoparticles composed of a hydrophobic dendrimer host molecule and water-soluble hydrophilic guest molecules. The work demonstrates that subtle changes in hierarchal composition and/or concentration can dramatically change mesoscopic ordering.
Nanoparticles with dynamic patches can form reversible self-assembled structures in aqueous solution that become topologically more connected on dilution. |
doi_str_mv | 10.1038/nnano.2009.232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734131696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734131696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-cb422822d1ae45872a673c2ae5e95360f84248c753dc979c53a849ac2549d3e63</originalsourceid><addsrcrecordid>eNp1kE1LwzAYgIMobk6vHqWo4KlbPpsETzL8goEH9Ryy7K3r6NKZtMj-va0bEwY7JZDnffLyIHRJ8JBgpkbeW18NKcZ6SBk9Qn0iuUoZ0-J4d1eyh85iXGAsqKb8FPWIVpoJwvvo_h3KPLUxwnJarpMqT2KV10lnXdlQF66EmPwU9TypG2-nJSQrW7t54SHGc3SS2zLCxfYcoM-nx4_xSzp5e34dP0xSx4mqUzfllCpKZ8QCF0pSm0nmqAUBWrAM54pTrpwUbOa01E4wq7i2jgquZwwyNkB3G-8qVN8NxNosi-igLK2HqolGMk4YyXRHXu-Ri6oJvl3OqExJhTNNW-jmEES5zCRvy6iWGm4oF6oYA-RmFYqlDWtDsOnSm7_0pktv2vTtwNVW20yXMPvHt61bYLQBYvvkvyD8_3tQebuZ8LZuAuyUe9gvHTyZ8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476743518</pqid></control><display><type>article</type><title>Self-assembly of soft nanoparticles with tunable patchiness</title><source>Nature Journals</source><source>Alma/SFX Local Collection</source><creator>Meijer, E. W ; Hermans, Thomas M ; Broeren, Maarten A. C ; Gomopoulos, Nikos ; van der Schoot, Paul ; van Genderen, Marcel H. P ; Sommerdijk, Nico A. J. M ; Fytas, George</creator><creatorcontrib>Meijer, E. W ; Hermans, Thomas M ; Broeren, Maarten A. C ; Gomopoulos, Nikos ; van der Schoot, Paul ; van Genderen, Marcel H. P ; Sommerdijk, Nico A. J. M ; Fytas, George</creatorcontrib><description>Details of the forces between nanoparticles determine the ways in which the nanoparticles can self-assemble into larger structures. The use of directed interactions has led to new concepts in self-assembly such as asymmetric dendrons
1
,
2
, Janus particles
3
, patchy colloids
4
,
5
,
6
and colloidal molecules
7
. Recent models that include attractive regions or ‘patches’ on the surface of the nanoparticles predict a wealth of intricate modes of assembly
8
,
9
,
10
,
11
,
12
. Interactions between such particles are also important in a range of phenomena including protein aggregation
13
,
14
and crystallization
15
, re-entrant phase transitions
16
,
17
,
18
, assembly of nanoemulsions
19
and the organization of nanoparticles into nanowires
20
. Here, we report the synthesis of 6-nm nanoparticles with dynamic hydrophobic patches and show that they can form reversible self-assembled structures in aqueous solution that become topologically more connected upon dilution. The organization is based on guest–host supramolecular chemistry with the nanoparticles composed of a hydrophobic dendrimer host molecule and water-soluble hydrophilic guest molecules. The work demonstrates that subtle changes in hierarchal composition and/or concentration can dramatically change mesoscopic ordering.
Nanoparticles with dynamic patches can form reversible self-assembled structures in aqueous solution that become topologically more connected on dilution.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2009.232</identifier><identifier>PMID: 19893514</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Aqueous solutions ; Binding sites ; Chemistry and Materials Science ; Colloids ; Crystallization ; Dilution ; Hydrophobicity ; letter ; Materials Science ; Nanoparticles ; Nanotechnology ; Nanotechnology and Microengineering ; NMR ; Nuclear magnetic resonance ; Patches (structures) ; Phase transitions ; Self-assembly ; Specialty products ; Viscosity</subject><ispartof>Nature nanotechnology, 2009-11, Vol.4 (11), p.721-726</ispartof><rights>Springer Nature Limited 2009</rights><rights>Nature Publishing Group 2009.</rights><rights>Copyright Nature Publishing Group Nov 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-cb422822d1ae45872a673c2ae5e95360f84248c753dc979c53a849ac2549d3e63</citedby><cites>FETCH-LOGICAL-c418t-cb422822d1ae45872a673c2ae5e95360f84248c753dc979c53a849ac2549d3e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,2731,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19893514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meijer, E. W</creatorcontrib><creatorcontrib>Hermans, Thomas M</creatorcontrib><creatorcontrib>Broeren, Maarten A. C</creatorcontrib><creatorcontrib>Gomopoulos, Nikos</creatorcontrib><creatorcontrib>van der Schoot, Paul</creatorcontrib><creatorcontrib>van Genderen, Marcel H. P</creatorcontrib><creatorcontrib>Sommerdijk, Nico A. J. M</creatorcontrib><creatorcontrib>Fytas, George</creatorcontrib><title>Self-assembly of soft nanoparticles with tunable patchiness</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Details of the forces between nanoparticles determine the ways in which the nanoparticles can self-assemble into larger structures. The use of directed interactions has led to new concepts in self-assembly such as asymmetric dendrons
1
,
2
, Janus particles
3
, patchy colloids
4
,
5
,
6
and colloidal molecules
7
. Recent models that include attractive regions or ‘patches’ on the surface of the nanoparticles predict a wealth of intricate modes of assembly
8
,
9
,
10
,
11
,
12
. Interactions between such particles are also important in a range of phenomena including protein aggregation
13
,
14
and crystallization
15
, re-entrant phase transitions
16
,
17
,
18
, assembly of nanoemulsions
19
and the organization of nanoparticles into nanowires
20
. Here, we report the synthesis of 6-nm nanoparticles with dynamic hydrophobic patches and show that they can form reversible self-assembled structures in aqueous solution that become topologically more connected upon dilution. The organization is based on guest–host supramolecular chemistry with the nanoparticles composed of a hydrophobic dendrimer host molecule and water-soluble hydrophilic guest molecules. The work demonstrates that subtle changes in hierarchal composition and/or concentration can dramatically change mesoscopic ordering.
Nanoparticles with dynamic patches can form reversible self-assembled structures in aqueous solution that become topologically more connected on dilution.</description><subject>Aqueous solutions</subject><subject>Binding sites</subject><subject>Chemistry and Materials Science</subject><subject>Colloids</subject><subject>Crystallization</subject><subject>Dilution</subject><subject>Hydrophobicity</subject><subject>letter</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Patches (structures)</subject><subject>Phase transitions</subject><subject>Self-assembly</subject><subject>Specialty products</subject><subject>Viscosity</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LwzAYgIMobk6vHqWo4KlbPpsETzL8goEH9Ryy7K3r6NKZtMj-va0bEwY7JZDnffLyIHRJ8JBgpkbeW18NKcZ6SBk9Qn0iuUoZ0-J4d1eyh85iXGAsqKb8FPWIVpoJwvvo_h3KPLUxwnJarpMqT2KV10lnXdlQF66EmPwU9TypG2-nJSQrW7t54SHGc3SS2zLCxfYcoM-nx4_xSzp5e34dP0xSx4mqUzfllCpKZ8QCF0pSm0nmqAUBWrAM54pTrpwUbOa01E4wq7i2jgquZwwyNkB3G-8qVN8NxNosi-igLK2HqolGMk4YyXRHXu-Ri6oJvl3OqExJhTNNW-jmEES5zCRvy6iWGm4oF6oYA-RmFYqlDWtDsOnSm7_0pktv2vTtwNVW20yXMPvHt61bYLQBYvvkvyD8_3tQebuZ8LZuAuyUe9gvHTyZ8A</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Meijer, E. W</creator><creator>Hermans, Thomas M</creator><creator>Broeren, Maarten A. C</creator><creator>Gomopoulos, Nikos</creator><creator>van der Schoot, Paul</creator><creator>van Genderen, Marcel H. P</creator><creator>Sommerdijk, Nico A. J. M</creator><creator>Fytas, George</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20091101</creationdate><title>Self-assembly of soft nanoparticles with tunable patchiness</title><author>Meijer, E. W ; Hermans, Thomas M ; Broeren, Maarten A. C ; Gomopoulos, Nikos ; van der Schoot, Paul ; van Genderen, Marcel H. P ; Sommerdijk, Nico A. J. M ; Fytas, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-cb422822d1ae45872a673c2ae5e95360f84248c753dc979c53a849ac2549d3e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aqueous solutions</topic><topic>Binding sites</topic><topic>Chemistry and Materials Science</topic><topic>Colloids</topic><topic>Crystallization</topic><topic>Dilution</topic><topic>Hydrophobicity</topic><topic>letter</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Patches (structures)</topic><topic>Phase transitions</topic><topic>Self-assembly</topic><topic>Specialty products</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meijer, E. W</creatorcontrib><creatorcontrib>Hermans, Thomas M</creatorcontrib><creatorcontrib>Broeren, Maarten A. C</creatorcontrib><creatorcontrib>Gomopoulos, Nikos</creatorcontrib><creatorcontrib>van der Schoot, Paul</creatorcontrib><creatorcontrib>van Genderen, Marcel H. P</creatorcontrib><creatorcontrib>Sommerdijk, Nico A. J. M</creatorcontrib><creatorcontrib>Fytas, George</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meijer, E. W</au><au>Hermans, Thomas M</au><au>Broeren, Maarten A. C</au><au>Gomopoulos, Nikos</au><au>van der Schoot, Paul</au><au>van Genderen, Marcel H. P</au><au>Sommerdijk, Nico A. J. M</au><au>Fytas, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-assembly of soft nanoparticles with tunable patchiness</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>4</volume><issue>11</issue><spage>721</spage><epage>726</epage><pages>721-726</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Details of the forces between nanoparticles determine the ways in which the nanoparticles can self-assemble into larger structures. The use of directed interactions has led to new concepts in self-assembly such as asymmetric dendrons
1
,
2
, Janus particles
3
, patchy colloids
4
,
5
,
6
and colloidal molecules
7
. Recent models that include attractive regions or ‘patches’ on the surface of the nanoparticles predict a wealth of intricate modes of assembly
8
,
9
,
10
,
11
,
12
. Interactions between such particles are also important in a range of phenomena including protein aggregation
13
,
14
and crystallization
15
, re-entrant phase transitions
16
,
17
,
18
, assembly of nanoemulsions
19
and the organization of nanoparticles into nanowires
20
. Here, we report the synthesis of 6-nm nanoparticles with dynamic hydrophobic patches and show that they can form reversible self-assembled structures in aqueous solution that become topologically more connected upon dilution. The organization is based on guest–host supramolecular chemistry with the nanoparticles composed of a hydrophobic dendrimer host molecule and water-soluble hydrophilic guest molecules. The work demonstrates that subtle changes in hierarchal composition and/or concentration can dramatically change mesoscopic ordering.
Nanoparticles with dynamic patches can form reversible self-assembled structures in aqueous solution that become topologically more connected on dilution.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19893514</pmid><doi>10.1038/nnano.2009.232</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2009-11, Vol.4 (11), p.721-726 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_734131696 |
source | Nature Journals; Alma/SFX Local Collection |
subjects | Aqueous solutions Binding sites Chemistry and Materials Science Colloids Crystallization Dilution Hydrophobicity letter Materials Science Nanoparticles Nanotechnology Nanotechnology and Microengineering NMR Nuclear magnetic resonance Patches (structures) Phase transitions Self-assembly Specialty products Viscosity |
title | Self-assembly of soft nanoparticles with tunable patchiness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T14%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-assembly%20of%20soft%20nanoparticles%20with%20tunable%20patchiness&rft.jtitle=Nature%20nanotechnology&rft.au=Meijer,%20E.%20W&rft.date=2009-11-01&rft.volume=4&rft.issue=11&rft.spage=721&rft.epage=726&rft.pages=721-726&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2009.232&rft_dat=%3Cproquest_cross%3E734131696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476743518&rft_id=info:pmid/19893514&rfr_iscdi=true |