Real-Time Robot Path Planning Based on a Modified Pulse-Coupled Neural Network Model

This paper presents a modified pulse-coupled neural network (MPCNN) model for real-time collision-free path planning of mobile robots in nonstationary environments. The proposed neural network for robots is topologically organized with only local lateral connections among neurons. It works in dynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2009-11, Vol.20 (11), p.1724-1739
Hauptverfasser: Hong Qu, Yang, S.X., Willms, A.R., Zhang Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1739
container_issue 11
container_start_page 1724
container_title IEEE transaction on neural networks and learning systems
container_volume 20
creator Hong Qu
Yang, S.X.
Willms, A.R.
Zhang Yi
description This paper presents a modified pulse-coupled neural network (MPCNN) model for real-time collision-free path planning of mobile robots in nonstationary environments. The proposed neural network for robots is topologically organized with only local lateral connections among neurons. It works in dynamic environments and requires no prior knowledge of target or barrier movements. The target neuron fires first, and then the firing event spreads out, through the lateral connections among the neurons, like the propagation of a wave. Obstacles have no connections to their neighbors. Each neuron records its parent, that is, the neighbor that caused it to fire. The real-time optimal path is then the sequence of parents from the robot to the target. In a static case where the barriers and targets are stationary, this paper proves that the generated wave in the network spreads outward with travel times proportional to the linking strength among neurons. Thus, the generated path is always the global shortest path from the robot to the target. In addition, each neuron in the proposed model can propagate a firing event to its neighboring neuron without any comparing computations. The proposed model is applied to generate collision-free paths for a mobile robot to solve a maze-type problem, to circumvent concave U-shaped obstacles, and to track a moving target in an environment with varying obstacles. The effectiveness and efficiency of the proposed approach is demonstrated through simulation and comparison studies.
doi_str_mv 10.1109/TNN.2009.2029858
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_734122482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5256181</ieee_id><sourcerecordid>1671436282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-81f8621d1a3b008ec82d4db560b3969d5c45d0af53192acdf2197eacb9ba38c53</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_Agiq3VuyDIIIhepua9_JjkqIs_CnVdynoOmSSjU2cnazKD9L9v1h0qeOglyUs-CS98CXkO9ByA6nfb9focKdVlQK2EekBOQXOoyxZ7WNaUi1ojNifkSc7XlAIXVD4mJ6CbRmgJp2R7FexQb_tdqK5iG6dqY6ef1Waw49iPP6oPNgdfxbGy1dfo-64v1WYecqhXcd4PpVqHOdmhTNOfmH4dVBiekkedLejZMp-R758-bldf6stvny9W7y9rxxs11Qo6JRE8WNZSqoJT6LlvhaQt01J74bjw1HaCgUbrfIel72Bdq1vLlBPsjLw5vrtP8fcc8mR2fXZhKN2HOGfTMA6IXGGRb--VIBvgTOJf-uo_eh3nNJZ_GA1IOXDkBdEjcinmnEJn9qnf2XRjgJpDNKZEYw7RmCWacuXl8u7c7oL_d2HJooDXC7DZ2aFLdnR9vnOIQJVqZHEvjq4PIdwdCxQSFLBbtY2cpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912041424</pqid></control><display><type>article</type><title>Real-Time Robot Path Planning Based on a Modified Pulse-Coupled Neural Network Model</title><source>IEEE Electronic Library (IEL)</source><creator>Hong Qu ; Yang, S.X. ; Willms, A.R. ; Zhang Yi</creator><creatorcontrib>Hong Qu ; Yang, S.X. ; Willms, A.R. ; Zhang Yi</creatorcontrib><description>This paper presents a modified pulse-coupled neural network (MPCNN) model for real-time collision-free path planning of mobile robots in nonstationary environments. The proposed neural network for robots is topologically organized with only local lateral connections among neurons. It works in dynamic environments and requires no prior knowledge of target or barrier movements. The target neuron fires first, and then the firing event spreads out, through the lateral connections among the neurons, like the propagation of a wave. Obstacles have no connections to their neighbors. Each neuron records its parent, that is, the neighbor that caused it to fire. The real-time optimal path is then the sequence of parents from the robot to the target. In a static case where the barriers and targets are stationary, this paper proves that the generated wave in the network spreads outward with travel times proportional to the linking strength among neurons. Thus, the generated path is always the global shortest path from the robot to the target. In addition, each neuron in the proposed model can propagate a firing event to its neighboring neuron without any comparing computations. The proposed model is applied to generate collision-free paths for a mobile robot to solve a maze-type problem, to circumvent concave U-shaped obstacles, and to track a moving target in an environment with varying obstacles. The effectiveness and efficiency of the proposed approach is demonstrated through simulation and comparison studies.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2009.2029858</identifier><identifier>PMID: 19775961</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Action Potentials - physiology ; Algorithms ; Applied sciences ; Artificial Intelligence ; Collision avoidance ; Computational modeling ; Computer science ; Computer science; control theory; systems ; Computer Simulation ; Control theory. Systems ; Exact sciences and technology ; Fires ; Firing ; Intelligent robots ; Joining processes ; Joints ; Maze Learning - physiology ; mobile robot ; Mobile robots ; neural dynamics ; Neural networks ; Neural Networks (Computer) ; Neurons ; Neurons - physiology ; Obstacles ; Path planning ; pulse-coupled neural networks (PCNNs) ; Real time ; Robotics ; Robotics - methods ; Robots ; spiking ; Studies ; Target tracking ; Time Factors ; wave</subject><ispartof>IEEE transaction on neural networks and learning systems, 2009-11, Vol.20 (11), p.1724-1739</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-81f8621d1a3b008ec82d4db560b3969d5c45d0af53192acdf2197eacb9ba38c53</citedby><cites>FETCH-LOGICAL-c478t-81f8621d1a3b008ec82d4db560b3969d5c45d0af53192acdf2197eacb9ba38c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5256181$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5256181$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22108876$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19775961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong Qu</creatorcontrib><creatorcontrib>Yang, S.X.</creatorcontrib><creatorcontrib>Willms, A.R.</creatorcontrib><creatorcontrib>Zhang Yi</creatorcontrib><title>Real-Time Robot Path Planning Based on a Modified Pulse-Coupled Neural Network Model</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>This paper presents a modified pulse-coupled neural network (MPCNN) model for real-time collision-free path planning of mobile robots in nonstationary environments. The proposed neural network for robots is topologically organized with only local lateral connections among neurons. It works in dynamic environments and requires no prior knowledge of target or barrier movements. The target neuron fires first, and then the firing event spreads out, through the lateral connections among the neurons, like the propagation of a wave. Obstacles have no connections to their neighbors. Each neuron records its parent, that is, the neighbor that caused it to fire. The real-time optimal path is then the sequence of parents from the robot to the target. In a static case where the barriers and targets are stationary, this paper proves that the generated wave in the network spreads outward with travel times proportional to the linking strength among neurons. Thus, the generated path is always the global shortest path from the robot to the target. In addition, each neuron in the proposed model can propagate a firing event to its neighboring neuron without any comparing computations. The proposed model is applied to generate collision-free paths for a mobile robot to solve a maze-type problem, to circumvent concave U-shaped obstacles, and to track a moving target in an environment with varying obstacles. The effectiveness and efficiency of the proposed approach is demonstrated through simulation and comparison studies.</description><subject>Action Potentials - physiology</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Collision avoidance</subject><subject>Computational modeling</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Fires</subject><subject>Firing</subject><subject>Intelligent robots</subject><subject>Joining processes</subject><subject>Joints</subject><subject>Maze Learning - physiology</subject><subject>mobile robot</subject><subject>Mobile robots</subject><subject>neural dynamics</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Obstacles</subject><subject>Path planning</subject><subject>pulse-coupled neural networks (PCNNs)</subject><subject>Real time</subject><subject>Robotics</subject><subject>Robotics - methods</subject><subject>Robots</subject><subject>spiking</subject><subject>Studies</subject><subject>Target tracking</subject><subject>Time Factors</subject><subject>wave</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90c9rFDEUB_Agiq3VuyDIIIhepua9_JjkqIs_CnVdynoOmSSjU2cnazKD9L9v1h0qeOglyUs-CS98CXkO9ByA6nfb9focKdVlQK2EekBOQXOoyxZ7WNaUi1ojNifkSc7XlAIXVD4mJ6CbRmgJp2R7FexQb_tdqK5iG6dqY6ef1Waw49iPP6oPNgdfxbGy1dfo-64v1WYecqhXcd4PpVqHOdmhTNOfmH4dVBiekkedLejZMp-R758-bldf6stvny9W7y9rxxs11Qo6JRE8WNZSqoJT6LlvhaQt01J74bjw1HaCgUbrfIel72Bdq1vLlBPsjLw5vrtP8fcc8mR2fXZhKN2HOGfTMA6IXGGRb--VIBvgTOJf-uo_eh3nNJZ_GA1IOXDkBdEjcinmnEJn9qnf2XRjgJpDNKZEYw7RmCWacuXl8u7c7oL_d2HJooDXC7DZ2aFLdnR9vnOIQJVqZHEvjq4PIdwdCxQSFLBbtY2cpg</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Hong Qu</creator><creator>Yang, S.X.</creator><creator>Willms, A.R.</creator><creator>Zhang Yi</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20091101</creationdate><title>Real-Time Robot Path Planning Based on a Modified Pulse-Coupled Neural Network Model</title><author>Hong Qu ; Yang, S.X. ; Willms, A.R. ; Zhang Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-81f8621d1a3b008ec82d4db560b3969d5c45d0af53192acdf2197eacb9ba38c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Action Potentials - physiology</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Collision avoidance</topic><topic>Computational modeling</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Fires</topic><topic>Firing</topic><topic>Intelligent robots</topic><topic>Joining processes</topic><topic>Joints</topic><topic>Maze Learning - physiology</topic><topic>mobile robot</topic><topic>Mobile robots</topic><topic>neural dynamics</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Obstacles</topic><topic>Path planning</topic><topic>pulse-coupled neural networks (PCNNs)</topic><topic>Real time</topic><topic>Robotics</topic><topic>Robotics - methods</topic><topic>Robots</topic><topic>spiking</topic><topic>Studies</topic><topic>Target tracking</topic><topic>Time Factors</topic><topic>wave</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong Qu</creatorcontrib><creatorcontrib>Yang, S.X.</creatorcontrib><creatorcontrib>Willms, A.R.</creatorcontrib><creatorcontrib>Zhang Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hong Qu</au><au>Yang, S.X.</au><au>Willms, A.R.</au><au>Zhang Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Robot Path Planning Based on a Modified Pulse-Coupled Neural Network Model</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>20</volume><issue>11</issue><spage>1724</spage><epage>1739</epage><pages>1724-1739</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>This paper presents a modified pulse-coupled neural network (MPCNN) model for real-time collision-free path planning of mobile robots in nonstationary environments. The proposed neural network for robots is topologically organized with only local lateral connections among neurons. It works in dynamic environments and requires no prior knowledge of target or barrier movements. The target neuron fires first, and then the firing event spreads out, through the lateral connections among the neurons, like the propagation of a wave. Obstacles have no connections to their neighbors. Each neuron records its parent, that is, the neighbor that caused it to fire. The real-time optimal path is then the sequence of parents from the robot to the target. In a static case where the barriers and targets are stationary, this paper proves that the generated wave in the network spreads outward with travel times proportional to the linking strength among neurons. Thus, the generated path is always the global shortest path from the robot to the target. In addition, each neuron in the proposed model can propagate a firing event to its neighboring neuron without any comparing computations. The proposed model is applied to generate collision-free paths for a mobile robot to solve a maze-type problem, to circumvent concave U-shaped obstacles, and to track a moving target in an environment with varying obstacles. The effectiveness and efficiency of the proposed approach is demonstrated through simulation and comparison studies.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>19775961</pmid><doi>10.1109/TNN.2009.2029858</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2009-11, Vol.20 (11), p.1724-1739
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_proquest_miscellaneous_734122482
source IEEE Electronic Library (IEL)
subjects Action Potentials - physiology
Algorithms
Applied sciences
Artificial Intelligence
Collision avoidance
Computational modeling
Computer science
Computer science
control theory
systems
Computer Simulation
Control theory. Systems
Exact sciences and technology
Fires
Firing
Intelligent robots
Joining processes
Joints
Maze Learning - physiology
mobile robot
Mobile robots
neural dynamics
Neural networks
Neural Networks (Computer)
Neurons
Neurons - physiology
Obstacles
Path planning
pulse-coupled neural networks (PCNNs)
Real time
Robotics
Robotics - methods
Robots
spiking
Studies
Target tracking
Time Factors
wave
title Real-Time Robot Path Planning Based on a Modified Pulse-Coupled Neural Network Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Robot%20Path%20Planning%20Based%20on%20a%20Modified%20Pulse-Coupled%20Neural%20Network%20Model&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Hong%20Qu&rft.date=2009-11-01&rft.volume=20&rft.issue=11&rft.spage=1724&rft.epage=1739&rft.pages=1724-1739&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2009.2029858&rft_dat=%3Cproquest_RIE%3E1671436282%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912041424&rft_id=info:pmid/19775961&rft_ieee_id=5256181&rfr_iscdi=true