Mechanical properties of modern calcite- ( Mergerlia truncata) and phosphate-shelled brachiopods ( Discradisca stella and Lingula anatina) determined by nanoindentation

We measured distribution patterns of hardness and elastic modulus by nanoindentation on shells of the rhynchonelliform brachiopod Mergerlia truncata and the linguliform brachiopods Discradisca stella and Lingula anatina. The rhynchonelliformea produce calcitic shells while the linguliformea produce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural biology 2009-12, Vol.168 (3), p.396-408
Hauptverfasser: Merkel, Casjen, Deuschle, Julia, Griesshaber, Erika, Enders, Susan, Steinhauser, Erwin, Hochleitner, Rupert, Brand, Uwe, Schmahl, Wolfgang W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 408
container_issue 3
container_start_page 396
container_title Journal of structural biology
container_volume 168
creator Merkel, Casjen
Deuschle, Julia
Griesshaber, Erika
Enders, Susan
Steinhauser, Erwin
Hochleitner, Rupert
Brand, Uwe
Schmahl, Wolfgang W.
description We measured distribution patterns of hardness and elastic modulus by nanoindentation on shells of the rhynchonelliform brachiopod Mergerlia truncata and the linguliform brachiopods Discradisca stella and Lingula anatina. The rhynchonelliformea produce calcitic shells while the linguliformea produce chitinophosphatic shells. Dorsal and ventral valves, commissure and hinge of the calcitic shell of M. truncata show different nanohardness values (from 2.3 to 4.6 GPa) and E-modulus (from 52 to 76 GPa). The hardness of the biocalcite is always increased compared to inorganic calcite. We attribute the effects to different amounts of inter- and intracrystalline organic matrix. Profiles parallel to the radius of curvature of the valves cutting through the different layers of shell material surprisingly show quite uniform values of nanohardness and modulus of elasticity. Nanoindentation tests on the chitinophosphatic brachiopods D. stella and L. anatina reflect the hierarchical structure composed of laminae with varying degree of mineralization. As a result of the two-phase composite of biopolymer nanofibrils reinforced with Ca-phosphate nanoparticles, nanohardness, and E-modulus correlate almost linearly from ( H = 0.25 GPa, E = 2.5 GPa) to ( H = 2.5 GPa, E = 50 GPa). The mineral provides stiffness and hardness, the biopolymer provides flexibility; and the composite provides fracture toughness. Gradients in the degree of mineralization reduce potential stress concentrations at the interface between stiff mineralized and soft non-mineralized laminae. For the epibenthic chitinophosphatic D. stella the lamination is also present but less pronounced than for the infaunal L. anatina, and the overall distribution of material strength in the cross-sectional profile shows a maximum in the center and a decrease towards the inner and outer shell margins (modulus of elasticity from 30 to 12 GPa, hardness from 1.7 to 0.5 GPa). Accordingly, the two epibenthic forms, calcitic M. truncata and chitinophosphatic D. stella display fairly bulky (homogeneous) nanomechanical properties of their shell materials, while the burrowing infaunal L. anatina is distinctively laminated. The strongly mineralized laminae, which provide the strength to the shell, are also brittle, but keeping them as thin as possible, allows some bending flexibility. This flexibility is not required for the epibenthic life style.
doi_str_mv 10.1016/j.jsb.2009.08.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734116567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047847709002378</els_id><sourcerecordid>734116567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-de73cf8d7c3380b9583d9743c373ee83f6b0585ef572be714d26d9cc65d0b5533</originalsourceid><addsrcrecordid>eNp9kc-O1SAUxonROH_0AdwYduqiFUopNK7M6KjJnbjRNaFwOuWmhQrUZN7Ix5TOvYk7N-ec5Py-Lwc-hF5RUlNCu_fH-piGuiGkr4msCW2foEtKel7Jjoun-9yKSrZCXKCrlI6EkJY29Dm6oL1oetLJS_TnDsykvTN6xmsMK8TsIOEw4iVYiB6XhXEZKvwW30G8hzg7jXPcvNFZv8PaW7xOIa2TLlCaYJ7B4iFqM7mwBpuK7pNLJmpbqsYpF0I_yg7O32-Ps87OFy8LGeLi_G7wgL32wXkLPpd18C_Qs1HPCV6e-zX6efv5x83X6vD9y7ebj4fKtFTmyoJgZpRWGMYkGXoume1FywwTDECysRsIlxxGLpoBBG1t09nemI5bMnDO2DV6c_Itv_Frg5TVUg7fj_YQtqQEaynteCcKSU-kiSGlCKNao1t0fFCUqD0fdVQlH7Xno4hUJZ-ieX1234YF7D_FOZACfDgBUN7420FUyTjwBqyLYLKywf3H_i9af6PL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734116567</pqid></control><display><type>article</type><title>Mechanical properties of modern calcite- ( Mergerlia truncata) and phosphate-shelled brachiopods ( Discradisca stella and Lingula anatina) determined by nanoindentation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Merkel, Casjen ; Deuschle, Julia ; Griesshaber, Erika ; Enders, Susan ; Steinhauser, Erwin ; Hochleitner, Rupert ; Brand, Uwe ; Schmahl, Wolfgang W.</creator><creatorcontrib>Merkel, Casjen ; Deuschle, Julia ; Griesshaber, Erika ; Enders, Susan ; Steinhauser, Erwin ; Hochleitner, Rupert ; Brand, Uwe ; Schmahl, Wolfgang W.</creatorcontrib><description>We measured distribution patterns of hardness and elastic modulus by nanoindentation on shells of the rhynchonelliform brachiopod Mergerlia truncata and the linguliform brachiopods Discradisca stella and Lingula anatina. The rhynchonelliformea produce calcitic shells while the linguliformea produce chitinophosphatic shells. Dorsal and ventral valves, commissure and hinge of the calcitic shell of M. truncata show different nanohardness values (from 2.3 to 4.6 GPa) and E-modulus (from 52 to 76 GPa). The hardness of the biocalcite is always increased compared to inorganic calcite. We attribute the effects to different amounts of inter- and intracrystalline organic matrix. Profiles parallel to the radius of curvature of the valves cutting through the different layers of shell material surprisingly show quite uniform values of nanohardness and modulus of elasticity. Nanoindentation tests on the chitinophosphatic brachiopods D. stella and L. anatina reflect the hierarchical structure composed of laminae with varying degree of mineralization. As a result of the two-phase composite of biopolymer nanofibrils reinforced with Ca-phosphate nanoparticles, nanohardness, and E-modulus correlate almost linearly from ( H = 0.25 GPa, E = 2.5 GPa) to ( H = 2.5 GPa, E = 50 GPa). The mineral provides stiffness and hardness, the biopolymer provides flexibility; and the composite provides fracture toughness. Gradients in the degree of mineralization reduce potential stress concentrations at the interface between stiff mineralized and soft non-mineralized laminae. For the epibenthic chitinophosphatic D. stella the lamination is also present but less pronounced than for the infaunal L. anatina, and the overall distribution of material strength in the cross-sectional profile shows a maximum in the center and a decrease towards the inner and outer shell margins (modulus of elasticity from 30 to 12 GPa, hardness from 1.7 to 0.5 GPa). Accordingly, the two epibenthic forms, calcitic M. truncata and chitinophosphatic D. stella display fairly bulky (homogeneous) nanomechanical properties of their shell materials, while the burrowing infaunal L. anatina is distinctively laminated. The strongly mineralized laminae, which provide the strength to the shell, are also brittle, but keeping them as thin as possible, allows some bending flexibility. This flexibility is not required for the epibenthic life style.</description><identifier>ISSN: 1047-8477</identifier><identifier>EISSN: 1095-8657</identifier><identifier>DOI: 10.1016/j.jsb.2009.08.014</identifier><identifier>PMID: 19729068</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biomechanical Phenomena ; Bone ; Bone and Bones - chemistry ; Bone and Bones - physiology ; Calcitic and phosphatic brachiopod shells ; Calcium Carbonate - chemistry ; Cross-laminated fibrous microstructure ; Elastic modulus ; Elastic Modulus - physiology ; Hardness ; Invertebrates - chemistry ; Laminated nanocomposite ; Nacre ; Nanohardness ; Nanoindentation ; Phosphates - chemistry</subject><ispartof>Journal of structural biology, 2009-12, Vol.168 (3), p.396-408</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-de73cf8d7c3380b9583d9743c373ee83f6b0585ef572be714d26d9cc65d0b5533</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsb.2009.08.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19729068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Merkel, Casjen</creatorcontrib><creatorcontrib>Deuschle, Julia</creatorcontrib><creatorcontrib>Griesshaber, Erika</creatorcontrib><creatorcontrib>Enders, Susan</creatorcontrib><creatorcontrib>Steinhauser, Erwin</creatorcontrib><creatorcontrib>Hochleitner, Rupert</creatorcontrib><creatorcontrib>Brand, Uwe</creatorcontrib><creatorcontrib>Schmahl, Wolfgang W.</creatorcontrib><title>Mechanical properties of modern calcite- ( Mergerlia truncata) and phosphate-shelled brachiopods ( Discradisca stella and Lingula anatina) determined by nanoindentation</title><title>Journal of structural biology</title><addtitle>J Struct Biol</addtitle><description>We measured distribution patterns of hardness and elastic modulus by nanoindentation on shells of the rhynchonelliform brachiopod Mergerlia truncata and the linguliform brachiopods Discradisca stella and Lingula anatina. The rhynchonelliformea produce calcitic shells while the linguliformea produce chitinophosphatic shells. Dorsal and ventral valves, commissure and hinge of the calcitic shell of M. truncata show different nanohardness values (from 2.3 to 4.6 GPa) and E-modulus (from 52 to 76 GPa). The hardness of the biocalcite is always increased compared to inorganic calcite. We attribute the effects to different amounts of inter- and intracrystalline organic matrix. Profiles parallel to the radius of curvature of the valves cutting through the different layers of shell material surprisingly show quite uniform values of nanohardness and modulus of elasticity. Nanoindentation tests on the chitinophosphatic brachiopods D. stella and L. anatina reflect the hierarchical structure composed of laminae with varying degree of mineralization. As a result of the two-phase composite of biopolymer nanofibrils reinforced with Ca-phosphate nanoparticles, nanohardness, and E-modulus correlate almost linearly from ( H = 0.25 GPa, E = 2.5 GPa) to ( H = 2.5 GPa, E = 50 GPa). The mineral provides stiffness and hardness, the biopolymer provides flexibility; and the composite provides fracture toughness. Gradients in the degree of mineralization reduce potential stress concentrations at the interface between stiff mineralized and soft non-mineralized laminae. For the epibenthic chitinophosphatic D. stella the lamination is also present but less pronounced than for the infaunal L. anatina, and the overall distribution of material strength in the cross-sectional profile shows a maximum in the center and a decrease towards the inner and outer shell margins (modulus of elasticity from 30 to 12 GPa, hardness from 1.7 to 0.5 GPa). Accordingly, the two epibenthic forms, calcitic M. truncata and chitinophosphatic D. stella display fairly bulky (homogeneous) nanomechanical properties of their shell materials, while the burrowing infaunal L. anatina is distinctively laminated. The strongly mineralized laminae, which provide the strength to the shell, are also brittle, but keeping them as thin as possible, allows some bending flexibility. This flexibility is not required for the epibenthic life style.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Bone</subject><subject>Bone and Bones - chemistry</subject><subject>Bone and Bones - physiology</subject><subject>Calcitic and phosphatic brachiopod shells</subject><subject>Calcium Carbonate - chemistry</subject><subject>Cross-laminated fibrous microstructure</subject><subject>Elastic modulus</subject><subject>Elastic Modulus - physiology</subject><subject>Hardness</subject><subject>Invertebrates - chemistry</subject><subject>Laminated nanocomposite</subject><subject>Nacre</subject><subject>Nanohardness</subject><subject>Nanoindentation</subject><subject>Phosphates - chemistry</subject><issn>1047-8477</issn><issn>1095-8657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc-O1SAUxonROH_0AdwYduqiFUopNK7M6KjJnbjRNaFwOuWmhQrUZN7Ix5TOvYk7N-ec5Py-Lwc-hF5RUlNCu_fH-piGuiGkr4msCW2foEtKel7Jjoun-9yKSrZCXKCrlI6EkJY29Dm6oL1oetLJS_TnDsykvTN6xmsMK8TsIOEw4iVYiB6XhXEZKvwW30G8hzg7jXPcvNFZv8PaW7xOIa2TLlCaYJ7B4iFqM7mwBpuK7pNLJmpbqsYpF0I_yg7O32-Ps87OFy8LGeLi_G7wgL32wXkLPpd18C_Qs1HPCV6e-zX6efv5x83X6vD9y7ebj4fKtFTmyoJgZpRWGMYkGXoume1FywwTDECysRsIlxxGLpoBBG1t09nemI5bMnDO2DV6c_Itv_Frg5TVUg7fj_YQtqQEaynteCcKSU-kiSGlCKNao1t0fFCUqD0fdVQlH7Xno4hUJZ-ieX1234YF7D_FOZACfDgBUN7420FUyTjwBqyLYLKywf3H_i9af6PL</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Merkel, Casjen</creator><creator>Deuschle, Julia</creator><creator>Griesshaber, Erika</creator><creator>Enders, Susan</creator><creator>Steinhauser, Erwin</creator><creator>Hochleitner, Rupert</creator><creator>Brand, Uwe</creator><creator>Schmahl, Wolfgang W.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091201</creationdate><title>Mechanical properties of modern calcite- ( Mergerlia truncata) and phosphate-shelled brachiopods ( Discradisca stella and Lingula anatina) determined by nanoindentation</title><author>Merkel, Casjen ; Deuschle, Julia ; Griesshaber, Erika ; Enders, Susan ; Steinhauser, Erwin ; Hochleitner, Rupert ; Brand, Uwe ; Schmahl, Wolfgang W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-de73cf8d7c3380b9583d9743c373ee83f6b0585ef572be714d26d9cc65d0b5533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Bone</topic><topic>Bone and Bones - chemistry</topic><topic>Bone and Bones - physiology</topic><topic>Calcitic and phosphatic brachiopod shells</topic><topic>Calcium Carbonate - chemistry</topic><topic>Cross-laminated fibrous microstructure</topic><topic>Elastic modulus</topic><topic>Elastic Modulus - physiology</topic><topic>Hardness</topic><topic>Invertebrates - chemistry</topic><topic>Laminated nanocomposite</topic><topic>Nacre</topic><topic>Nanohardness</topic><topic>Nanoindentation</topic><topic>Phosphates - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merkel, Casjen</creatorcontrib><creatorcontrib>Deuschle, Julia</creatorcontrib><creatorcontrib>Griesshaber, Erika</creatorcontrib><creatorcontrib>Enders, Susan</creatorcontrib><creatorcontrib>Steinhauser, Erwin</creatorcontrib><creatorcontrib>Hochleitner, Rupert</creatorcontrib><creatorcontrib>Brand, Uwe</creatorcontrib><creatorcontrib>Schmahl, Wolfgang W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merkel, Casjen</au><au>Deuschle, Julia</au><au>Griesshaber, Erika</au><au>Enders, Susan</au><au>Steinhauser, Erwin</au><au>Hochleitner, Rupert</au><au>Brand, Uwe</au><au>Schmahl, Wolfgang W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties of modern calcite- ( Mergerlia truncata) and phosphate-shelled brachiopods ( Discradisca stella and Lingula anatina) determined by nanoindentation</atitle><jtitle>Journal of structural biology</jtitle><addtitle>J Struct Biol</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>168</volume><issue>3</issue><spage>396</spage><epage>408</epage><pages>396-408</pages><issn>1047-8477</issn><eissn>1095-8657</eissn><abstract>We measured distribution patterns of hardness and elastic modulus by nanoindentation on shells of the rhynchonelliform brachiopod Mergerlia truncata and the linguliform brachiopods Discradisca stella and Lingula anatina. The rhynchonelliformea produce calcitic shells while the linguliformea produce chitinophosphatic shells. Dorsal and ventral valves, commissure and hinge of the calcitic shell of M. truncata show different nanohardness values (from 2.3 to 4.6 GPa) and E-modulus (from 52 to 76 GPa). The hardness of the biocalcite is always increased compared to inorganic calcite. We attribute the effects to different amounts of inter- and intracrystalline organic matrix. Profiles parallel to the radius of curvature of the valves cutting through the different layers of shell material surprisingly show quite uniform values of nanohardness and modulus of elasticity. Nanoindentation tests on the chitinophosphatic brachiopods D. stella and L. anatina reflect the hierarchical structure composed of laminae with varying degree of mineralization. As a result of the two-phase composite of biopolymer nanofibrils reinforced with Ca-phosphate nanoparticles, nanohardness, and E-modulus correlate almost linearly from ( H = 0.25 GPa, E = 2.5 GPa) to ( H = 2.5 GPa, E = 50 GPa). The mineral provides stiffness and hardness, the biopolymer provides flexibility; and the composite provides fracture toughness. Gradients in the degree of mineralization reduce potential stress concentrations at the interface between stiff mineralized and soft non-mineralized laminae. For the epibenthic chitinophosphatic D. stella the lamination is also present but less pronounced than for the infaunal L. anatina, and the overall distribution of material strength in the cross-sectional profile shows a maximum in the center and a decrease towards the inner and outer shell margins (modulus of elasticity from 30 to 12 GPa, hardness from 1.7 to 0.5 GPa). Accordingly, the two epibenthic forms, calcitic M. truncata and chitinophosphatic D. stella display fairly bulky (homogeneous) nanomechanical properties of their shell materials, while the burrowing infaunal L. anatina is distinctively laminated. The strongly mineralized laminae, which provide the strength to the shell, are also brittle, but keeping them as thin as possible, allows some bending flexibility. This flexibility is not required for the epibenthic life style.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19729068</pmid><doi>10.1016/j.jsb.2009.08.014</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-8477
ispartof Journal of structural biology, 2009-12, Vol.168 (3), p.396-408
issn 1047-8477
1095-8657
language eng
recordid cdi_proquest_miscellaneous_734116567
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Biomechanical Phenomena
Bone
Bone and Bones - chemistry
Bone and Bones - physiology
Calcitic and phosphatic brachiopod shells
Calcium Carbonate - chemistry
Cross-laminated fibrous microstructure
Elastic modulus
Elastic Modulus - physiology
Hardness
Invertebrates - chemistry
Laminated nanocomposite
Nacre
Nanohardness
Nanoindentation
Phosphates - chemistry
title Mechanical properties of modern calcite- ( Mergerlia truncata) and phosphate-shelled brachiopods ( Discradisca stella and Lingula anatina) determined by nanoindentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20of%20modern%20calcite-%20(%20Mergerlia%20truncata)%20and%20phosphate-shelled%20brachiopods%20(%20Discradisca%20stella%20and%20Lingula%20anatina)%20determined%20by%20nanoindentation&rft.jtitle=Journal%20of%20structural%20biology&rft.au=Merkel,%20Casjen&rft.date=2009-12-01&rft.volume=168&rft.issue=3&rft.spage=396&rft.epage=408&rft.pages=396-408&rft.issn=1047-8477&rft.eissn=1095-8657&rft_id=info:doi/10.1016/j.jsb.2009.08.014&rft_dat=%3Cproquest_cross%3E734116567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734116567&rft_id=info:pmid/19729068&rft_els_id=S1047847709002378&rfr_iscdi=true