Mechanical properties of modern calcite- ( Mergerlia truncata) and phosphate-shelled brachiopods ( Discradisca stella and Lingula anatina) determined by nanoindentation
We measured distribution patterns of hardness and elastic modulus by nanoindentation on shells of the rhynchonelliform brachiopod Mergerlia truncata and the linguliform brachiopods Discradisca stella and Lingula anatina. The rhynchonelliformea produce calcitic shells while the linguliformea produce...
Gespeichert in:
Veröffentlicht in: | Journal of structural biology 2009-12, Vol.168 (3), p.396-408 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 408 |
---|---|
container_issue | 3 |
container_start_page | 396 |
container_title | Journal of structural biology |
container_volume | 168 |
creator | Merkel, Casjen Deuschle, Julia Griesshaber, Erika Enders, Susan Steinhauser, Erwin Hochleitner, Rupert Brand, Uwe Schmahl, Wolfgang W. |
description | We measured distribution patterns of hardness and elastic modulus by nanoindentation on shells of the rhynchonelliform brachiopod
Mergerlia truncata and the linguliform brachiopods
Discradisca stella and
Lingula anatina. The rhynchonelliformea produce calcitic shells while the linguliformea produce chitinophosphatic shells. Dorsal and ventral valves, commissure and hinge of the calcitic shell of
M. truncata show different nanohardness values (from 2.3 to 4.6
GPa) and
E-modulus (from 52 to 76
GPa). The hardness of the biocalcite is always increased compared to inorganic calcite. We attribute the effects to different amounts of inter- and intracrystalline organic matrix. Profiles parallel to the radius of curvature of the valves cutting through the different layers of shell material surprisingly show quite uniform values of nanohardness and modulus of elasticity. Nanoindentation tests on the chitinophosphatic brachiopods
D. stella and
L. anatina reflect the hierarchical structure composed of laminae with varying degree of mineralization. As a result of the two-phase composite of biopolymer nanofibrils reinforced with Ca-phosphate nanoparticles, nanohardness, and
E-modulus correlate almost linearly from (
H
=
0.25
GPa,
E
=
2.5
GPa) to (
H
=
2.5
GPa,
E
=
50
GPa). The mineral provides stiffness and hardness, the biopolymer provides flexibility; and the composite provides fracture toughness. Gradients in the degree of mineralization reduce potential stress concentrations at the interface between stiff mineralized and soft non-mineralized laminae. For the epibenthic chitinophosphatic
D. stella the lamination is also present but less pronounced than for the infaunal
L. anatina, and the overall distribution of material strength in the cross-sectional profile shows a maximum in the center and a decrease towards the inner and outer shell margins (modulus of elasticity from 30 to 12
GPa, hardness from 1.7 to 0.5
GPa). Accordingly, the two epibenthic forms, calcitic
M. truncata and chitinophosphatic
D. stella display fairly bulky (homogeneous) nanomechanical properties of their shell materials, while the burrowing infaunal
L. anatina is distinctively laminated. The strongly mineralized laminae, which provide the strength to the shell, are also brittle, but keeping them as thin as possible, allows some bending flexibility. This flexibility is not required for the epibenthic life style. |
doi_str_mv | 10.1016/j.jsb.2009.08.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734116567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047847709002378</els_id><sourcerecordid>734116567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-de73cf8d7c3380b9583d9743c373ee83f6b0585ef572be714d26d9cc65d0b5533</originalsourceid><addsrcrecordid>eNp9kc-O1SAUxonROH_0AdwYduqiFUopNK7M6KjJnbjRNaFwOuWmhQrUZN7Ix5TOvYk7N-ec5Py-Lwc-hF5RUlNCu_fH-piGuiGkr4msCW2foEtKel7Jjoun-9yKSrZCXKCrlI6EkJY29Dm6oL1oetLJS_TnDsykvTN6xmsMK8TsIOEw4iVYiB6XhXEZKvwW30G8hzg7jXPcvNFZv8PaW7xOIa2TLlCaYJ7B4iFqM7mwBpuK7pNLJmpbqsYpF0I_yg7O32-Ps87OFy8LGeLi_G7wgL32wXkLPpd18C_Qs1HPCV6e-zX6efv5x83X6vD9y7ebj4fKtFTmyoJgZpRWGMYkGXoume1FywwTDECysRsIlxxGLpoBBG1t09nemI5bMnDO2DV6c_Itv_Frg5TVUg7fj_YQtqQEaynteCcKSU-kiSGlCKNao1t0fFCUqD0fdVQlH7Xno4hUJZ-ieX1234YF7D_FOZACfDgBUN7420FUyTjwBqyLYLKywf3H_i9af6PL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734116567</pqid></control><display><type>article</type><title>Mechanical properties of modern calcite- ( Mergerlia truncata) and phosphate-shelled brachiopods ( Discradisca stella and Lingula anatina) determined by nanoindentation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Merkel, Casjen ; Deuschle, Julia ; Griesshaber, Erika ; Enders, Susan ; Steinhauser, Erwin ; Hochleitner, Rupert ; Brand, Uwe ; Schmahl, Wolfgang W.</creator><creatorcontrib>Merkel, Casjen ; Deuschle, Julia ; Griesshaber, Erika ; Enders, Susan ; Steinhauser, Erwin ; Hochleitner, Rupert ; Brand, Uwe ; Schmahl, Wolfgang W.</creatorcontrib><description>We measured distribution patterns of hardness and elastic modulus by nanoindentation on shells of the rhynchonelliform brachiopod
Mergerlia truncata and the linguliform brachiopods
Discradisca stella and
Lingula anatina. The rhynchonelliformea produce calcitic shells while the linguliformea produce chitinophosphatic shells. Dorsal and ventral valves, commissure and hinge of the calcitic shell of
M. truncata show different nanohardness values (from 2.3 to 4.6
GPa) and
E-modulus (from 52 to 76
GPa). The hardness of the biocalcite is always increased compared to inorganic calcite. We attribute the effects to different amounts of inter- and intracrystalline organic matrix. Profiles parallel to the radius of curvature of the valves cutting through the different layers of shell material surprisingly show quite uniform values of nanohardness and modulus of elasticity. Nanoindentation tests on the chitinophosphatic brachiopods
D. stella and
L. anatina reflect the hierarchical structure composed of laminae with varying degree of mineralization. As a result of the two-phase composite of biopolymer nanofibrils reinforced with Ca-phosphate nanoparticles, nanohardness, and
E-modulus correlate almost linearly from (
H
=
0.25
GPa,
E
=
2.5
GPa) to (
H
=
2.5
GPa,
E
=
50
GPa). The mineral provides stiffness and hardness, the biopolymer provides flexibility; and the composite provides fracture toughness. Gradients in the degree of mineralization reduce potential stress concentrations at the interface between stiff mineralized and soft non-mineralized laminae. For the epibenthic chitinophosphatic
D. stella the lamination is also present but less pronounced than for the infaunal
L. anatina, and the overall distribution of material strength in the cross-sectional profile shows a maximum in the center and a decrease towards the inner and outer shell margins (modulus of elasticity from 30 to 12
GPa, hardness from 1.7 to 0.5
GPa). Accordingly, the two epibenthic forms, calcitic
M. truncata and chitinophosphatic
D. stella display fairly bulky (homogeneous) nanomechanical properties of their shell materials, while the burrowing infaunal
L. anatina is distinctively laminated. The strongly mineralized laminae, which provide the strength to the shell, are also brittle, but keeping them as thin as possible, allows some bending flexibility. This flexibility is not required for the epibenthic life style.</description><identifier>ISSN: 1047-8477</identifier><identifier>EISSN: 1095-8657</identifier><identifier>DOI: 10.1016/j.jsb.2009.08.014</identifier><identifier>PMID: 19729068</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biomechanical Phenomena ; Bone ; Bone and Bones - chemistry ; Bone and Bones - physiology ; Calcitic and phosphatic brachiopod shells ; Calcium Carbonate - chemistry ; Cross-laminated fibrous microstructure ; Elastic modulus ; Elastic Modulus - physiology ; Hardness ; Invertebrates - chemistry ; Laminated nanocomposite ; Nacre ; Nanohardness ; Nanoindentation ; Phosphates - chemistry</subject><ispartof>Journal of structural biology, 2009-12, Vol.168 (3), p.396-408</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-de73cf8d7c3380b9583d9743c373ee83f6b0585ef572be714d26d9cc65d0b5533</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsb.2009.08.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19729068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Merkel, Casjen</creatorcontrib><creatorcontrib>Deuschle, Julia</creatorcontrib><creatorcontrib>Griesshaber, Erika</creatorcontrib><creatorcontrib>Enders, Susan</creatorcontrib><creatorcontrib>Steinhauser, Erwin</creatorcontrib><creatorcontrib>Hochleitner, Rupert</creatorcontrib><creatorcontrib>Brand, Uwe</creatorcontrib><creatorcontrib>Schmahl, Wolfgang W.</creatorcontrib><title>Mechanical properties of modern calcite- ( Mergerlia truncata) and phosphate-shelled brachiopods ( Discradisca stella and Lingula anatina) determined by nanoindentation</title><title>Journal of structural biology</title><addtitle>J Struct Biol</addtitle><description>We measured distribution patterns of hardness and elastic modulus by nanoindentation on shells of the rhynchonelliform brachiopod
Mergerlia truncata and the linguliform brachiopods
Discradisca stella and
Lingula anatina. The rhynchonelliformea produce calcitic shells while the linguliformea produce chitinophosphatic shells. Dorsal and ventral valves, commissure and hinge of the calcitic shell of
M. truncata show different nanohardness values (from 2.3 to 4.6
GPa) and
E-modulus (from 52 to 76
GPa). The hardness of the biocalcite is always increased compared to inorganic calcite. We attribute the effects to different amounts of inter- and intracrystalline organic matrix. Profiles parallel to the radius of curvature of the valves cutting through the different layers of shell material surprisingly show quite uniform values of nanohardness and modulus of elasticity. Nanoindentation tests on the chitinophosphatic brachiopods
D. stella and
L. anatina reflect the hierarchical structure composed of laminae with varying degree of mineralization. As a result of the two-phase composite of biopolymer nanofibrils reinforced with Ca-phosphate nanoparticles, nanohardness, and
E-modulus correlate almost linearly from (
H
=
0.25
GPa,
E
=
2.5
GPa) to (
H
=
2.5
GPa,
E
=
50
GPa). The mineral provides stiffness and hardness, the biopolymer provides flexibility; and the composite provides fracture toughness. Gradients in the degree of mineralization reduce potential stress concentrations at the interface between stiff mineralized and soft non-mineralized laminae. For the epibenthic chitinophosphatic
D. stella the lamination is also present but less pronounced than for the infaunal
L. anatina, and the overall distribution of material strength in the cross-sectional profile shows a maximum in the center and a decrease towards the inner and outer shell margins (modulus of elasticity from 30 to 12
GPa, hardness from 1.7 to 0.5
GPa). Accordingly, the two epibenthic forms, calcitic
M. truncata and chitinophosphatic
D. stella display fairly bulky (homogeneous) nanomechanical properties of their shell materials, while the burrowing infaunal
L. anatina is distinctively laminated. The strongly mineralized laminae, which provide the strength to the shell, are also brittle, but keeping them as thin as possible, allows some bending flexibility. This flexibility is not required for the epibenthic life style.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Bone</subject><subject>Bone and Bones - chemistry</subject><subject>Bone and Bones - physiology</subject><subject>Calcitic and phosphatic brachiopod shells</subject><subject>Calcium Carbonate - chemistry</subject><subject>Cross-laminated fibrous microstructure</subject><subject>Elastic modulus</subject><subject>Elastic Modulus - physiology</subject><subject>Hardness</subject><subject>Invertebrates - chemistry</subject><subject>Laminated nanocomposite</subject><subject>Nacre</subject><subject>Nanohardness</subject><subject>Nanoindentation</subject><subject>Phosphates - chemistry</subject><issn>1047-8477</issn><issn>1095-8657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc-O1SAUxonROH_0AdwYduqiFUopNK7M6KjJnbjRNaFwOuWmhQrUZN7Ix5TOvYk7N-ec5Py-Lwc-hF5RUlNCu_fH-piGuiGkr4msCW2foEtKel7Jjoun-9yKSrZCXKCrlI6EkJY29Dm6oL1oetLJS_TnDsykvTN6xmsMK8TsIOEw4iVYiB6XhXEZKvwW30G8hzg7jXPcvNFZv8PaW7xOIa2TLlCaYJ7B4iFqM7mwBpuK7pNLJmpbqsYpF0I_yg7O32-Ps87OFy8LGeLi_G7wgL32wXkLPpd18C_Qs1HPCV6e-zX6efv5x83X6vD9y7ebj4fKtFTmyoJgZpRWGMYkGXoume1FywwTDECysRsIlxxGLpoBBG1t09nemI5bMnDO2DV6c_Itv_Frg5TVUg7fj_YQtqQEaynteCcKSU-kiSGlCKNao1t0fFCUqD0fdVQlH7Xno4hUJZ-ieX1234YF7D_FOZACfDgBUN7420FUyTjwBqyLYLKywf3H_i9af6PL</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Merkel, Casjen</creator><creator>Deuschle, Julia</creator><creator>Griesshaber, Erika</creator><creator>Enders, Susan</creator><creator>Steinhauser, Erwin</creator><creator>Hochleitner, Rupert</creator><creator>Brand, Uwe</creator><creator>Schmahl, Wolfgang W.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091201</creationdate><title>Mechanical properties of modern calcite- ( Mergerlia truncata) and phosphate-shelled brachiopods ( Discradisca stella and Lingula anatina) determined by nanoindentation</title><author>Merkel, Casjen ; Deuschle, Julia ; Griesshaber, Erika ; Enders, Susan ; Steinhauser, Erwin ; Hochleitner, Rupert ; Brand, Uwe ; Schmahl, Wolfgang W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-de73cf8d7c3380b9583d9743c373ee83f6b0585ef572be714d26d9cc65d0b5533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Bone</topic><topic>Bone and Bones - chemistry</topic><topic>Bone and Bones - physiology</topic><topic>Calcitic and phosphatic brachiopod shells</topic><topic>Calcium Carbonate - chemistry</topic><topic>Cross-laminated fibrous microstructure</topic><topic>Elastic modulus</topic><topic>Elastic Modulus - physiology</topic><topic>Hardness</topic><topic>Invertebrates - chemistry</topic><topic>Laminated nanocomposite</topic><topic>Nacre</topic><topic>Nanohardness</topic><topic>Nanoindentation</topic><topic>Phosphates - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merkel, Casjen</creatorcontrib><creatorcontrib>Deuschle, Julia</creatorcontrib><creatorcontrib>Griesshaber, Erika</creatorcontrib><creatorcontrib>Enders, Susan</creatorcontrib><creatorcontrib>Steinhauser, Erwin</creatorcontrib><creatorcontrib>Hochleitner, Rupert</creatorcontrib><creatorcontrib>Brand, Uwe</creatorcontrib><creatorcontrib>Schmahl, Wolfgang W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merkel, Casjen</au><au>Deuschle, Julia</au><au>Griesshaber, Erika</au><au>Enders, Susan</au><au>Steinhauser, Erwin</au><au>Hochleitner, Rupert</au><au>Brand, Uwe</au><au>Schmahl, Wolfgang W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties of modern calcite- ( Mergerlia truncata) and phosphate-shelled brachiopods ( Discradisca stella and Lingula anatina) determined by nanoindentation</atitle><jtitle>Journal of structural biology</jtitle><addtitle>J Struct Biol</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>168</volume><issue>3</issue><spage>396</spage><epage>408</epage><pages>396-408</pages><issn>1047-8477</issn><eissn>1095-8657</eissn><abstract>We measured distribution patterns of hardness and elastic modulus by nanoindentation on shells of the rhynchonelliform brachiopod
Mergerlia truncata and the linguliform brachiopods
Discradisca stella and
Lingula anatina. The rhynchonelliformea produce calcitic shells while the linguliformea produce chitinophosphatic shells. Dorsal and ventral valves, commissure and hinge of the calcitic shell of
M. truncata show different nanohardness values (from 2.3 to 4.6
GPa) and
E-modulus (from 52 to 76
GPa). The hardness of the biocalcite is always increased compared to inorganic calcite. We attribute the effects to different amounts of inter- and intracrystalline organic matrix. Profiles parallel to the radius of curvature of the valves cutting through the different layers of shell material surprisingly show quite uniform values of nanohardness and modulus of elasticity. Nanoindentation tests on the chitinophosphatic brachiopods
D. stella and
L. anatina reflect the hierarchical structure composed of laminae with varying degree of mineralization. As a result of the two-phase composite of biopolymer nanofibrils reinforced with Ca-phosphate nanoparticles, nanohardness, and
E-modulus correlate almost linearly from (
H
=
0.25
GPa,
E
=
2.5
GPa) to (
H
=
2.5
GPa,
E
=
50
GPa). The mineral provides stiffness and hardness, the biopolymer provides flexibility; and the composite provides fracture toughness. Gradients in the degree of mineralization reduce potential stress concentrations at the interface between stiff mineralized and soft non-mineralized laminae. For the epibenthic chitinophosphatic
D. stella the lamination is also present but less pronounced than for the infaunal
L. anatina, and the overall distribution of material strength in the cross-sectional profile shows a maximum in the center and a decrease towards the inner and outer shell margins (modulus of elasticity from 30 to 12
GPa, hardness from 1.7 to 0.5
GPa). Accordingly, the two epibenthic forms, calcitic
M. truncata and chitinophosphatic
D. stella display fairly bulky (homogeneous) nanomechanical properties of their shell materials, while the burrowing infaunal
L. anatina is distinctively laminated. The strongly mineralized laminae, which provide the strength to the shell, are also brittle, but keeping them as thin as possible, allows some bending flexibility. This flexibility is not required for the epibenthic life style.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19729068</pmid><doi>10.1016/j.jsb.2009.08.014</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-8477 |
ispartof | Journal of structural biology, 2009-12, Vol.168 (3), p.396-408 |
issn | 1047-8477 1095-8657 |
language | eng |
recordid | cdi_proquest_miscellaneous_734116567 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Biomechanical Phenomena Bone Bone and Bones - chemistry Bone and Bones - physiology Calcitic and phosphatic brachiopod shells Calcium Carbonate - chemistry Cross-laminated fibrous microstructure Elastic modulus Elastic Modulus - physiology Hardness Invertebrates - chemistry Laminated nanocomposite Nacre Nanohardness Nanoindentation Phosphates - chemistry |
title | Mechanical properties of modern calcite- ( Mergerlia truncata) and phosphate-shelled brachiopods ( Discradisca stella and Lingula anatina) determined by nanoindentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20of%20modern%20calcite-%20(%20Mergerlia%20truncata)%20and%20phosphate-shelled%20brachiopods%20(%20Discradisca%20stella%20and%20Lingula%20anatina)%20determined%20by%20nanoindentation&rft.jtitle=Journal%20of%20structural%20biology&rft.au=Merkel,%20Casjen&rft.date=2009-12-01&rft.volume=168&rft.issue=3&rft.spage=396&rft.epage=408&rft.pages=396-408&rft.issn=1047-8477&rft.eissn=1095-8657&rft_id=info:doi/10.1016/j.jsb.2009.08.014&rft_dat=%3Cproquest_cross%3E734116567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734116567&rft_id=info:pmid/19729068&rft_els_id=S1047847709002378&rfr_iscdi=true |