Top-Down Protein Fragmentation by Infrared Multiphoton Dissociation in a Dual Pressure Linear Ion Trap

Infrared multiphoton dissociation (IRMPD) was implemented in a novel dual pressure linear ion trap for rapid top-down proteomics. The high pressure cell provided improved trapping and isolation efficiencies while the isotopic profiles of 10+ charged ions could be resolved by mass analysis in the low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2009-11, Vol.81 (21), p.8677-8686
Hauptverfasser: Madsen, James A, Gardner, Myles W, Smith, Suncerae I, Ledvina, Aaron R, Coon, Joshua J, Schwartz, Jae C, Stafford, George C, Brodbelt, Jennifer S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8686
container_issue 21
container_start_page 8677
container_title Analytical chemistry (Washington)
container_volume 81
creator Madsen, James A
Gardner, Myles W
Smith, Suncerae I
Ledvina, Aaron R
Coon, Joshua J
Schwartz, Jae C
Stafford, George C
Brodbelt, Jennifer S
description Infrared multiphoton dissociation (IRMPD) was implemented in a novel dual pressure linear ion trap for rapid top-down proteomics. The high pressure cell provided improved trapping and isolation efficiencies while the isotopic profiles of 10+ charged ions could be resolved by mass analysis in the low pressure cell that enabled effective top down protein identification. Striking differences between IRMPD in the low pressure cell and CID in the high pressure cell were observed for proteins ranging from 8.6 to 29 kDa. Because of secondary dissociation, IRMPD yielded product ions in significantly lower charge states as compared to CID, thus facilitating more accurate mass identification and streamlining product ion assignment. This outcome was especially useful for database searching of larger proteins (∼29 kDa) as IRMPD substantially improved protein identification and scoring confidence. Also, IRMPD showed an increased selectivity toward backbone cleavages N-terminal to proline and C-terminal to acidic residues (especially for the lowest charge states), which could be useful for a priori spectral predictions and enhanced database searching for protein identification.
doi_str_mv 10.1021/ac901554z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734113810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902407201</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-9409e426b5712938e7dc8aefd7e64710ca3c4a427293dfc3244b3956421d1f733</originalsourceid><addsrcrecordid>eNpl0E1r3DAQBmARWpLNxyF_IJhCCDm4mZFkyz6WbJIubGkOm7OZleVWwSs5kk1Jfn0VdslCexJoHr0aXsbOEb4icLwhXQMWhXw7YDMsOORlVfFPbAYAIucK4Igdx_gMgAhYHrIjrFVVSKlmrFv5IZ_7Py57DH401mX3gX5tjBtptN5l69ds4bpAwbTZj6kf7fDbj-l-bmP02m5RekXZfKI-hZgYp2CypXWGQrZI01Wg4ZR97qiP5mx3nrCn-7vV7fd8-fNhcfttmZNQOOa1hNpIXq4LhbwWlVGtrsh0rTKlVAiahJYkuUrDttOCS7kWdVFKji12SogTdrXNHYJ_mUwcm42N2vQ9OeOn2CghEUWFkOSXf-Szn4JLyzUcVZ26giKh6y3SwccYTNcMwW4ovDYIzXv1zUf1yV7sAqf1xrR7ues6gcsdoKipT6U6beOH4xwqxKLaO9Jxv9T_H_4FTRqVvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217900105</pqid></control><display><type>article</type><title>Top-Down Protein Fragmentation by Infrared Multiphoton Dissociation in a Dual Pressure Linear Ion Trap</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Madsen, James A ; Gardner, Myles W ; Smith, Suncerae I ; Ledvina, Aaron R ; Coon, Joshua J ; Schwartz, Jae C ; Stafford, George C ; Brodbelt, Jennifer S</creator><creatorcontrib>Madsen, James A ; Gardner, Myles W ; Smith, Suncerae I ; Ledvina, Aaron R ; Coon, Joshua J ; Schwartz, Jae C ; Stafford, George C ; Brodbelt, Jennifer S</creatorcontrib><description>Infrared multiphoton dissociation (IRMPD) was implemented in a novel dual pressure linear ion trap for rapid top-down proteomics. The high pressure cell provided improved trapping and isolation efficiencies while the isotopic profiles of 10+ charged ions could be resolved by mass analysis in the low pressure cell that enabled effective top down protein identification. Striking differences between IRMPD in the low pressure cell and CID in the high pressure cell were observed for proteins ranging from 8.6 to 29 kDa. Because of secondary dissociation, IRMPD yielded product ions in significantly lower charge states as compared to CID, thus facilitating more accurate mass identification and streamlining product ion assignment. This outcome was especially useful for database searching of larger proteins (∼29 kDa) as IRMPD substantially improved protein identification and scoring confidence. Also, IRMPD showed an increased selectivity toward backbone cleavages N-terminal to proline and C-terminal to acidic residues (especially for the lowest charge states), which could be useful for a priori spectral predictions and enhanced database searching for protein identification.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac901554z</identifier><identifier>PMID: 19785447</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Biochemistry ; Cells ; Chemistry ; Databases, Protein ; Exact sciences and technology ; Infrared Rays ; Ion Transport ; Ions ; Ions - chemistry ; Pressure ; Proline - chemistry ; Proteins ; Proteins - chemistry ; Proteomics ; Proteomics - instrumentation ; Proteomics - methods ; Spectrometric and optical methods ; Tandem Mass Spectrometry - methods</subject><ispartof>Analytical chemistry (Washington), 2009-11, Vol.81 (21), p.8677-8686</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 1, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-9409e426b5712938e7dc8aefd7e64710ca3c4a427293dfc3244b3956421d1f733</citedby><cites>FETCH-LOGICAL-a371t-9409e426b5712938e7dc8aefd7e64710ca3c4a427293dfc3244b3956421d1f733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac901554z$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac901554z$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22081158$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19785447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Madsen, James A</creatorcontrib><creatorcontrib>Gardner, Myles W</creatorcontrib><creatorcontrib>Smith, Suncerae I</creatorcontrib><creatorcontrib>Ledvina, Aaron R</creatorcontrib><creatorcontrib>Coon, Joshua J</creatorcontrib><creatorcontrib>Schwartz, Jae C</creatorcontrib><creatorcontrib>Stafford, George C</creatorcontrib><creatorcontrib>Brodbelt, Jennifer S</creatorcontrib><title>Top-Down Protein Fragmentation by Infrared Multiphoton Dissociation in a Dual Pressure Linear Ion Trap</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Infrared multiphoton dissociation (IRMPD) was implemented in a novel dual pressure linear ion trap for rapid top-down proteomics. The high pressure cell provided improved trapping and isolation efficiencies while the isotopic profiles of 10+ charged ions could be resolved by mass analysis in the low pressure cell that enabled effective top down protein identification. Striking differences between IRMPD in the low pressure cell and CID in the high pressure cell were observed for proteins ranging from 8.6 to 29 kDa. Because of secondary dissociation, IRMPD yielded product ions in significantly lower charge states as compared to CID, thus facilitating more accurate mass identification and streamlining product ion assignment. This outcome was especially useful for database searching of larger proteins (∼29 kDa) as IRMPD substantially improved protein identification and scoring confidence. Also, IRMPD showed an increased selectivity toward backbone cleavages N-terminal to proline and C-terminal to acidic residues (especially for the lowest charge states), which could be useful for a priori spectral predictions and enhanced database searching for protein identification.</description><subject>Analytical chemistry</subject><subject>Biochemistry</subject><subject>Cells</subject><subject>Chemistry</subject><subject>Databases, Protein</subject><subject>Exact sciences and technology</subject><subject>Infrared Rays</subject><subject>Ion Transport</subject><subject>Ions</subject><subject>Ions - chemistry</subject><subject>Pressure</subject><subject>Proline - chemistry</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteomics</subject><subject>Proteomics - instrumentation</subject><subject>Proteomics - methods</subject><subject>Spectrometric and optical methods</subject><subject>Tandem Mass Spectrometry - methods</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E1r3DAQBmARWpLNxyF_IJhCCDm4mZFkyz6WbJIubGkOm7OZleVWwSs5kk1Jfn0VdslCexJoHr0aXsbOEb4icLwhXQMWhXw7YDMsOORlVfFPbAYAIucK4Igdx_gMgAhYHrIjrFVVSKlmrFv5IZ_7Py57DH401mX3gX5tjBtptN5l69ds4bpAwbTZj6kf7fDbj-l-bmP02m5RekXZfKI-hZgYp2CypXWGQrZI01Wg4ZR97qiP5mx3nrCn-7vV7fd8-fNhcfttmZNQOOa1hNpIXq4LhbwWlVGtrsh0rTKlVAiahJYkuUrDttOCS7kWdVFKji12SogTdrXNHYJ_mUwcm42N2vQ9OeOn2CghEUWFkOSXf-Szn4JLyzUcVZ26giKh6y3SwccYTNcMwW4ovDYIzXv1zUf1yV7sAqf1xrR7ues6gcsdoKipT6U6beOH4xwqxKLaO9Jxv9T_H_4FTRqVvw</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Madsen, James A</creator><creator>Gardner, Myles W</creator><creator>Smith, Suncerae I</creator><creator>Ledvina, Aaron R</creator><creator>Coon, Joshua J</creator><creator>Schwartz, Jae C</creator><creator>Stafford, George C</creator><creator>Brodbelt, Jennifer S</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20091101</creationdate><title>Top-Down Protein Fragmentation by Infrared Multiphoton Dissociation in a Dual Pressure Linear Ion Trap</title><author>Madsen, James A ; Gardner, Myles W ; Smith, Suncerae I ; Ledvina, Aaron R ; Coon, Joshua J ; Schwartz, Jae C ; Stafford, George C ; Brodbelt, Jennifer S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-9409e426b5712938e7dc8aefd7e64710ca3c4a427293dfc3244b3956421d1f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical chemistry</topic><topic>Biochemistry</topic><topic>Cells</topic><topic>Chemistry</topic><topic>Databases, Protein</topic><topic>Exact sciences and technology</topic><topic>Infrared Rays</topic><topic>Ion Transport</topic><topic>Ions</topic><topic>Ions - chemistry</topic><topic>Pressure</topic><topic>Proline - chemistry</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteomics</topic><topic>Proteomics - instrumentation</topic><topic>Proteomics - methods</topic><topic>Spectrometric and optical methods</topic><topic>Tandem Mass Spectrometry - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madsen, James A</creatorcontrib><creatorcontrib>Gardner, Myles W</creatorcontrib><creatorcontrib>Smith, Suncerae I</creatorcontrib><creatorcontrib>Ledvina, Aaron R</creatorcontrib><creatorcontrib>Coon, Joshua J</creatorcontrib><creatorcontrib>Schwartz, Jae C</creatorcontrib><creatorcontrib>Stafford, George C</creatorcontrib><creatorcontrib>Brodbelt, Jennifer S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madsen, James A</au><au>Gardner, Myles W</au><au>Smith, Suncerae I</au><au>Ledvina, Aaron R</au><au>Coon, Joshua J</au><au>Schwartz, Jae C</au><au>Stafford, George C</au><au>Brodbelt, Jennifer S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Top-Down Protein Fragmentation by Infrared Multiphoton Dissociation in a Dual Pressure Linear Ion Trap</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>81</volume><issue>21</issue><spage>8677</spage><epage>8686</epage><pages>8677-8686</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Infrared multiphoton dissociation (IRMPD) was implemented in a novel dual pressure linear ion trap for rapid top-down proteomics. The high pressure cell provided improved trapping and isolation efficiencies while the isotopic profiles of 10+ charged ions could be resolved by mass analysis in the low pressure cell that enabled effective top down protein identification. Striking differences between IRMPD in the low pressure cell and CID in the high pressure cell were observed for proteins ranging from 8.6 to 29 kDa. Because of secondary dissociation, IRMPD yielded product ions in significantly lower charge states as compared to CID, thus facilitating more accurate mass identification and streamlining product ion assignment. This outcome was especially useful for database searching of larger proteins (∼29 kDa) as IRMPD substantially improved protein identification and scoring confidence. Also, IRMPD showed an increased selectivity toward backbone cleavages N-terminal to proline and C-terminal to acidic residues (especially for the lowest charge states), which could be useful for a priori spectral predictions and enhanced database searching for protein identification.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19785447</pmid><doi>10.1021/ac901554z</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2009-11, Vol.81 (21), p.8677-8686
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_734113810
source MEDLINE; American Chemical Society Journals
subjects Analytical chemistry
Biochemistry
Cells
Chemistry
Databases, Protein
Exact sciences and technology
Infrared Rays
Ion Transport
Ions
Ions - chemistry
Pressure
Proline - chemistry
Proteins
Proteins - chemistry
Proteomics
Proteomics - instrumentation
Proteomics - methods
Spectrometric and optical methods
Tandem Mass Spectrometry - methods
title Top-Down Protein Fragmentation by Infrared Multiphoton Dissociation in a Dual Pressure Linear Ion Trap
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Top-Down%20Protein%20Fragmentation%20by%20Infrared%20Multiphoton%20Dissociation%20in%20a%20Dual%20Pressure%20Linear%20Ion%20Trap&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Madsen,%20James%20A&rft.date=2009-11-01&rft.volume=81&rft.issue=21&rft.spage=8677&rft.epage=8686&rft.pages=8677-8686&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac901554z&rft_dat=%3Cproquest_cross%3E1902407201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217900105&rft_id=info:pmid/19785447&rfr_iscdi=true