The geometry and electronic topology of higher-order charged Möbius annulenes

Higher-order aromatic charged Möbius-type annulenes have been L(k) realized computationally. These charged species are based on strips with more than one electronic half-twist, as defined by their linking numbers. The B3LYP/6-311+G(d,p) optimized structures and properties of annulene rings with such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2009-10, Vol.113 (43), p.11619-11629
Hauptverfasser: Wannere, Chaitanya S, Rzepa, Henry S, Rinderspacher, B Christopher, Paul, Ankan, Allan, Charlotte S M, Schaefer, 3rd, Henry F, Schleyer, Paul v R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11629
container_issue 43
container_start_page 11619
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 113
creator Wannere, Chaitanya S
Rzepa, Henry S
Rinderspacher, B Christopher
Paul, Ankan
Allan, Charlotte S M
Schaefer, 3rd, Henry F
Schleyer, Paul v R
description Higher-order aromatic charged Möbius-type annulenes have been L(k) realized computationally. These charged species are based on strips with more than one electronic half-twist, as defined by their linking numbers. The B3LYP/6-311+G(d,p) optimized structures and properties of annulene rings with such multiple half-twists (C(12)H(12)(2+), C(12)H(12)(2-), C(14)H(14), C(18)H(18)(2+), C(18)H(18)(2-), C(21)H(21)(+), C(24)H(24)(2-), C(28)H(28)(2+), and C(28)H(28)(2-)) have the nearly equal C-C bond lengths, small dihedral angles around the circuits, stabilization energies, and nucleus-independent chemical shift values associated with aromaticity. The topology and nature of Möbius annulene systems are analyzed in terms of the torus curves defined by electron density functions (rho(r)(pi), ELF(pi)) constructed using only the occupied pi-MOs. The pi-torus subdivides into a torus knot for annulenes defined by an odd linking number (L(k) = 1, 3pi) and a torus link for those with an even linking number (L(k) = 2, 4pi). The torus topology is shown to map onto single canonical pi-MOs only for even values of L(k). Incomplete and misleading descriptions of the topology of pi-electronic Möbius systems with an odd number of half twists result when only signed orbital diagrams are considered, as is often done for the iconic single half twist system.
doi_str_mv 10.1021/jp902176a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734099744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734099744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-8e97c55ab5d5af70cc941a609e10d71555ca1c014bd606b9b9e4d7a1a71ccfec3</originalsourceid><addsrcrecordid>eNpFkLtOwzAYhS0EoqUw8ALIG2II_E7suB5RxU0qsJQ5cuw_lyqJg50MfTFegBcjqBVM5wzfOcNHyCWDWwYxu9v2agqZ6iMyZyKGSMRMHE8dlioSaaJm5CyELQCwJOanZMZUmsiljOfkbVMhLdG1OPgd1Z2l2KAZvOtqQwfXu8aVO-oKWtVlhT5y3qKnptK-REtfv7_yegzTrhsb7DCck5NCNwEvDrkgH48Pm9VztH5_elndryOTCBiiJSpphNC5sEIXEoxRnOkUFDKwkgkhjGYGGM9tCmmucoXcSs20ZMYUaJIFud7_9t59jhiGrK2DwabRHboxZDLhoJTkfCJv9qTxLgSPRdb7utV-lzHIfu1lf_Ym9urwOuYt2n_yoCv5Ae0qa_c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734099744</pqid></control><display><type>article</type><title>The geometry and electronic topology of higher-order charged Möbius annulenes</title><source>ACS Publications</source><creator>Wannere, Chaitanya S ; Rzepa, Henry S ; Rinderspacher, B Christopher ; Paul, Ankan ; Allan, Charlotte S M ; Schaefer, 3rd, Henry F ; Schleyer, Paul v R</creator><creatorcontrib>Wannere, Chaitanya S ; Rzepa, Henry S ; Rinderspacher, B Christopher ; Paul, Ankan ; Allan, Charlotte S M ; Schaefer, 3rd, Henry F ; Schleyer, Paul v R</creatorcontrib><description>Higher-order aromatic charged Möbius-type annulenes have been L(k) realized computationally. These charged species are based on strips with more than one electronic half-twist, as defined by their linking numbers. The B3LYP/6-311+G(d,p) optimized structures and properties of annulene rings with such multiple half-twists (C(12)H(12)(2+), C(12)H(12)(2-), C(14)H(14), C(18)H(18)(2+), C(18)H(18)(2-), C(21)H(21)(+), C(24)H(24)(2-), C(28)H(28)(2+), and C(28)H(28)(2-)) have the nearly equal C-C bond lengths, small dihedral angles around the circuits, stabilization energies, and nucleus-independent chemical shift values associated with aromaticity. The topology and nature of Möbius annulene systems are analyzed in terms of the torus curves defined by electron density functions (rho(r)(pi), ELF(pi)) constructed using only the occupied pi-MOs. The pi-torus subdivides into a torus knot for annulenes defined by an odd linking number (L(k) = 1, 3pi) and a torus link for those with an even linking number (L(k) = 2, 4pi). The torus topology is shown to map onto single canonical pi-MOs only for even values of L(k). Incomplete and misleading descriptions of the topology of pi-electronic Möbius systems with an odd number of half twists result when only signed orbital diagrams are considered, as is often done for the iconic single half twist system.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp902176a</identifier><identifier>PMID: 19637872</identifier><language>eng</language><publisher>United States</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2009-10, Vol.113 (43), p.11619-11629</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-8e97c55ab5d5af70cc941a609e10d71555ca1c014bd606b9b9e4d7a1a71ccfec3</citedby><cites>FETCH-LOGICAL-c350t-8e97c55ab5d5af70cc941a609e10d71555ca1c014bd606b9b9e4d7a1a71ccfec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19637872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wannere, Chaitanya S</creatorcontrib><creatorcontrib>Rzepa, Henry S</creatorcontrib><creatorcontrib>Rinderspacher, B Christopher</creatorcontrib><creatorcontrib>Paul, Ankan</creatorcontrib><creatorcontrib>Allan, Charlotte S M</creatorcontrib><creatorcontrib>Schaefer, 3rd, Henry F</creatorcontrib><creatorcontrib>Schleyer, Paul v R</creatorcontrib><title>The geometry and electronic topology of higher-order charged Möbius annulenes</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J Phys Chem A</addtitle><description>Higher-order aromatic charged Möbius-type annulenes have been L(k) realized computationally. These charged species are based on strips with more than one electronic half-twist, as defined by their linking numbers. The B3LYP/6-311+G(d,p) optimized structures and properties of annulene rings with such multiple half-twists (C(12)H(12)(2+), C(12)H(12)(2-), C(14)H(14), C(18)H(18)(2+), C(18)H(18)(2-), C(21)H(21)(+), C(24)H(24)(2-), C(28)H(28)(2+), and C(28)H(28)(2-)) have the nearly equal C-C bond lengths, small dihedral angles around the circuits, stabilization energies, and nucleus-independent chemical shift values associated with aromaticity. The topology and nature of Möbius annulene systems are analyzed in terms of the torus curves defined by electron density functions (rho(r)(pi), ELF(pi)) constructed using only the occupied pi-MOs. The pi-torus subdivides into a torus knot for annulenes defined by an odd linking number (L(k) = 1, 3pi) and a torus link for those with an even linking number (L(k) = 2, 4pi). The torus topology is shown to map onto single canonical pi-MOs only for even values of L(k). Incomplete and misleading descriptions of the topology of pi-electronic Möbius systems with an odd number of half twists result when only signed orbital diagrams are considered, as is often done for the iconic single half twist system.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpFkLtOwzAYhS0EoqUw8ALIG2II_E7suB5RxU0qsJQ5cuw_lyqJg50MfTFegBcjqBVM5wzfOcNHyCWDWwYxu9v2agqZ6iMyZyKGSMRMHE8dlioSaaJm5CyELQCwJOanZMZUmsiljOfkbVMhLdG1OPgd1Z2l2KAZvOtqQwfXu8aVO-oKWtVlhT5y3qKnptK-REtfv7_yegzTrhsb7DCck5NCNwEvDrkgH48Pm9VztH5_elndryOTCBiiJSpphNC5sEIXEoxRnOkUFDKwkgkhjGYGGM9tCmmucoXcSs20ZMYUaJIFud7_9t59jhiGrK2DwabRHboxZDLhoJTkfCJv9qTxLgSPRdb7utV-lzHIfu1lf_Ym9urwOuYt2n_yoCv5Ae0qa_c</recordid><startdate>20091029</startdate><enddate>20091029</enddate><creator>Wannere, Chaitanya S</creator><creator>Rzepa, Henry S</creator><creator>Rinderspacher, B Christopher</creator><creator>Paul, Ankan</creator><creator>Allan, Charlotte S M</creator><creator>Schaefer, 3rd, Henry F</creator><creator>Schleyer, Paul v R</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091029</creationdate><title>The geometry and electronic topology of higher-order charged Möbius annulenes</title><author>Wannere, Chaitanya S ; Rzepa, Henry S ; Rinderspacher, B Christopher ; Paul, Ankan ; Allan, Charlotte S M ; Schaefer, 3rd, Henry F ; Schleyer, Paul v R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-8e97c55ab5d5af70cc941a609e10d71555ca1c014bd606b9b9e4d7a1a71ccfec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wannere, Chaitanya S</creatorcontrib><creatorcontrib>Rzepa, Henry S</creatorcontrib><creatorcontrib>Rinderspacher, B Christopher</creatorcontrib><creatorcontrib>Paul, Ankan</creatorcontrib><creatorcontrib>Allan, Charlotte S M</creatorcontrib><creatorcontrib>Schaefer, 3rd, Henry F</creatorcontrib><creatorcontrib>Schleyer, Paul v R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wannere, Chaitanya S</au><au>Rzepa, Henry S</au><au>Rinderspacher, B Christopher</au><au>Paul, Ankan</au><au>Allan, Charlotte S M</au><au>Schaefer, 3rd, Henry F</au><au>Schleyer, Paul v R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The geometry and electronic topology of higher-order charged Möbius annulenes</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J Phys Chem A</addtitle><date>2009-10-29</date><risdate>2009</risdate><volume>113</volume><issue>43</issue><spage>11619</spage><epage>11629</epage><pages>11619-11629</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Higher-order aromatic charged Möbius-type annulenes have been L(k) realized computationally. These charged species are based on strips with more than one electronic half-twist, as defined by their linking numbers. The B3LYP/6-311+G(d,p) optimized structures and properties of annulene rings with such multiple half-twists (C(12)H(12)(2+), C(12)H(12)(2-), C(14)H(14), C(18)H(18)(2+), C(18)H(18)(2-), C(21)H(21)(+), C(24)H(24)(2-), C(28)H(28)(2+), and C(28)H(28)(2-)) have the nearly equal C-C bond lengths, small dihedral angles around the circuits, stabilization energies, and nucleus-independent chemical shift values associated with aromaticity. The topology and nature of Möbius annulene systems are analyzed in terms of the torus curves defined by electron density functions (rho(r)(pi), ELF(pi)) constructed using only the occupied pi-MOs. The pi-torus subdivides into a torus knot for annulenes defined by an odd linking number (L(k) = 1, 3pi) and a torus link for those with an even linking number (L(k) = 2, 4pi). The torus topology is shown to map onto single canonical pi-MOs only for even values of L(k). Incomplete and misleading descriptions of the topology of pi-electronic Möbius systems with an odd number of half twists result when only signed orbital diagrams are considered, as is often done for the iconic single half twist system.</abstract><cop>United States</cop><pmid>19637872</pmid><doi>10.1021/jp902176a</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2009-10, Vol.113 (43), p.11619-11629
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_734099744
source ACS Publications
title The geometry and electronic topology of higher-order charged Möbius annulenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20geometry%20and%20electronic%20topology%20of%20higher-order%20charged%20M%C3%B6bius%20annulenes&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Wannere,%20Chaitanya%20S&rft.date=2009-10-29&rft.volume=113&rft.issue=43&rft.spage=11619&rft.epage=11629&rft.pages=11619-11629&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp902176a&rft_dat=%3Cproquest_cross%3E734099744%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734099744&rft_id=info:pmid/19637872&rfr_iscdi=true