Metal−Phosphine Bond Strengths of the Transition Metals: A Challenge for DFT

Previous promising tests of the new M06 family of functionals in predicting ruthenium−metal phosphine bond dissociation energies (Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157) have been extended to a series of phosphine complexes of chromium, molybdenum, nickel, and ruthenium for which rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2009-10, Vol.113 (43), p.11833-11844
Hauptverfasser: Minenkov, Yury, Occhipinti, Giovanni, Jensen, Vidar R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11844
container_issue 43
container_start_page 11833
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 113
creator Minenkov, Yury
Occhipinti, Giovanni
Jensen, Vidar R
description Previous promising tests of the new M06 family of functionals in predicting ruthenium−metal phosphine bond dissociation energies (Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157) have been extended to a series of phosphine complexes of chromium, molybdenum, nickel, and ruthenium for which relevant experimental data are available. In addition to the M06 family of functionals, bond dissociation enthalpies have been calculated using a selection of density functionals and hybrid functionals based on the generalized gradient approximation (GGA), and with or without an empirical term (i.e., DFT-D) accounting for long-range dispersion. For the ruthenium complexes, second-order Møller−Plesset perturbation theory (MP2) has also been applied. Electrostatic and nonelectrostatic solvent effects have been estimated using the polarizable continuum model (PCM), allowing for comparison with experimental data obtained for dissociation reactions in organic solvents. Whereas the GGA and hybrid-GGA functionals grossly underestimate the absolute metal−phosphine bond enthalpies, with mean unsigned errors (MUEs) for a set of 10 phosphine dissociation reactions in the range 13−27 kcal/mol, the recently developed DFT-based methods for inclusion of attractive noncovalent interactions and dispersion (the DFT-D and M06 functionals) dramatically improve upon the situation. The best agreement with experiment is observed for BLYP-D (MUE = 2.2 kcal/mol), and with the exception for M06-2X, all these methods provide MUEs well below 5 kcal/mol, which should be sufficient for a broad range of applications. The improvements in predicted relative bond enthalpies are less convincing, however. In several cases the GGA and hybrid-GGA functionals are better at reproducing substitution effects than the DFT-D and M06 methods.
doi_str_mv 10.1021/jp902940c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734099295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734099295</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-96f5e61d72b5be477dbb72087086cd051b7420d77e73301cd49a1d69ff40b3283</originalsourceid><addsrcrecordid>eNpt0L1OwzAUBWALgWgpDLwA8oIQQ-DajuOYrRQKSOVHosyREzskVRqndjLwBsw8Ik9CoBUsTL6Sv3ukexA6JHBGgJLzRSOByhCyLTQknELAKeHb_QyxDHjE5ADteb8AAMJouIsGRAoWSRBD9HBvWlV9vn88FdY3RVkbfGlrjZ9bZ-rXtvDY5rgtDJ47VfuyLW2Nf1b8BR7jSaGqqncG59bhq-l8H-3k_Z852Lwj9DK9nk9ug9njzd1kPAsUi6ENZJRzExEtaMpTEwqh01RQiAXEUaaBk1SEFLQQRjAGJNOhVERHMs9DSBmN2QidrHMbZ1ed8W2yLH1mqkrVxnY-ESwEKankvTxdy8xZ753Jk8aVS-XeEgLJd3vJb3u9PdqkdunS6D-5qasHx2ugMp8sbOfq_sh_gr4Av8J1NA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734099295</pqid></control><display><type>article</type><title>Metal−Phosphine Bond Strengths of the Transition Metals: A Challenge for DFT</title><source>American Chemical Society</source><creator>Minenkov, Yury ; Occhipinti, Giovanni ; Jensen, Vidar R</creator><creatorcontrib>Minenkov, Yury ; Occhipinti, Giovanni ; Jensen, Vidar R</creatorcontrib><description>Previous promising tests of the new M06 family of functionals in predicting ruthenium−metal phosphine bond dissociation energies (Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157) have been extended to a series of phosphine complexes of chromium, molybdenum, nickel, and ruthenium for which relevant experimental data are available. In addition to the M06 family of functionals, bond dissociation enthalpies have been calculated using a selection of density functionals and hybrid functionals based on the generalized gradient approximation (GGA), and with or without an empirical term (i.e., DFT-D) accounting for long-range dispersion. For the ruthenium complexes, second-order Møller−Plesset perturbation theory (MP2) has also been applied. Electrostatic and nonelectrostatic solvent effects have been estimated using the polarizable continuum model (PCM), allowing for comparison with experimental data obtained for dissociation reactions in organic solvents. Whereas the GGA and hybrid-GGA functionals grossly underestimate the absolute metal−phosphine bond enthalpies, with mean unsigned errors (MUEs) for a set of 10 phosphine dissociation reactions in the range 13−27 kcal/mol, the recently developed DFT-based methods for inclusion of attractive noncovalent interactions and dispersion (the DFT-D and M06 functionals) dramatically improve upon the situation. The best agreement with experiment is observed for BLYP-D (MUE = 2.2 kcal/mol), and with the exception for M06-2X, all these methods provide MUEs well below 5 kcal/mol, which should be sufficient for a broad range of applications. The improvements in predicted relative bond enthalpies are less convincing, however. In several cases the GGA and hybrid-GGA functionals are better at reproducing substitution effects than the DFT-D and M06 methods.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp902940c</identifier><identifier>PMID: 19736907</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2009-10, Vol.113 (43), p.11833-11844</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-96f5e61d72b5be477dbb72087086cd051b7420d77e73301cd49a1d69ff40b3283</citedby><cites>FETCH-LOGICAL-a380t-96f5e61d72b5be477dbb72087086cd051b7420d77e73301cd49a1d69ff40b3283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp902940c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp902940c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19736907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Minenkov, Yury</creatorcontrib><creatorcontrib>Occhipinti, Giovanni</creatorcontrib><creatorcontrib>Jensen, Vidar R</creatorcontrib><title>Metal−Phosphine Bond Strengths of the Transition Metals: A Challenge for DFT</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Previous promising tests of the new M06 family of functionals in predicting ruthenium−metal phosphine bond dissociation energies (Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157) have been extended to a series of phosphine complexes of chromium, molybdenum, nickel, and ruthenium for which relevant experimental data are available. In addition to the M06 family of functionals, bond dissociation enthalpies have been calculated using a selection of density functionals and hybrid functionals based on the generalized gradient approximation (GGA), and with or without an empirical term (i.e., DFT-D) accounting for long-range dispersion. For the ruthenium complexes, second-order Møller−Plesset perturbation theory (MP2) has also been applied. Electrostatic and nonelectrostatic solvent effects have been estimated using the polarizable continuum model (PCM), allowing for comparison with experimental data obtained for dissociation reactions in organic solvents. Whereas the GGA and hybrid-GGA functionals grossly underestimate the absolute metal−phosphine bond enthalpies, with mean unsigned errors (MUEs) for a set of 10 phosphine dissociation reactions in the range 13−27 kcal/mol, the recently developed DFT-based methods for inclusion of attractive noncovalent interactions and dispersion (the DFT-D and M06 functionals) dramatically improve upon the situation. The best agreement with experiment is observed for BLYP-D (MUE = 2.2 kcal/mol), and with the exception for M06-2X, all these methods provide MUEs well below 5 kcal/mol, which should be sufficient for a broad range of applications. The improvements in predicted relative bond enthalpies are less convincing, however. In several cases the GGA and hybrid-GGA functionals are better at reproducing substitution effects than the DFT-D and M06 methods.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpt0L1OwzAUBWALgWgpDLwA8oIQQ-DajuOYrRQKSOVHosyREzskVRqndjLwBsw8Ik9CoBUsTL6Sv3ukexA6JHBGgJLzRSOByhCyLTQknELAKeHb_QyxDHjE5ADteb8AAMJouIsGRAoWSRBD9HBvWlV9vn88FdY3RVkbfGlrjZ9bZ-rXtvDY5rgtDJ47VfuyLW2Nf1b8BR7jSaGqqncG59bhq-l8H-3k_Z852Lwj9DK9nk9ug9njzd1kPAsUi6ENZJRzExEtaMpTEwqh01RQiAXEUaaBk1SEFLQQRjAGJNOhVERHMs9DSBmN2QidrHMbZ1ed8W2yLH1mqkrVxnY-ESwEKankvTxdy8xZ753Jk8aVS-XeEgLJd3vJb3u9PdqkdunS6D-5qasHx2ugMp8sbOfq_sh_gr4Av8J1NA</recordid><startdate>20091029</startdate><enddate>20091029</enddate><creator>Minenkov, Yury</creator><creator>Occhipinti, Giovanni</creator><creator>Jensen, Vidar R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091029</creationdate><title>Metal−Phosphine Bond Strengths of the Transition Metals: A Challenge for DFT</title><author>Minenkov, Yury ; Occhipinti, Giovanni ; Jensen, Vidar R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-96f5e61d72b5be477dbb72087086cd051b7420d77e73301cd49a1d69ff40b3283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minenkov, Yury</creatorcontrib><creatorcontrib>Occhipinti, Giovanni</creatorcontrib><creatorcontrib>Jensen, Vidar R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minenkov, Yury</au><au>Occhipinti, Giovanni</au><au>Jensen, Vidar R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal−Phosphine Bond Strengths of the Transition Metals: A Challenge for DFT</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2009-10-29</date><risdate>2009</risdate><volume>113</volume><issue>43</issue><spage>11833</spage><epage>11844</epage><pages>11833-11844</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Previous promising tests of the new M06 family of functionals in predicting ruthenium−metal phosphine bond dissociation energies (Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157) have been extended to a series of phosphine complexes of chromium, molybdenum, nickel, and ruthenium for which relevant experimental data are available. In addition to the M06 family of functionals, bond dissociation enthalpies have been calculated using a selection of density functionals and hybrid functionals based on the generalized gradient approximation (GGA), and with or without an empirical term (i.e., DFT-D) accounting for long-range dispersion. For the ruthenium complexes, second-order Møller−Plesset perturbation theory (MP2) has also been applied. Electrostatic and nonelectrostatic solvent effects have been estimated using the polarizable continuum model (PCM), allowing for comparison with experimental data obtained for dissociation reactions in organic solvents. Whereas the GGA and hybrid-GGA functionals grossly underestimate the absolute metal−phosphine bond enthalpies, with mean unsigned errors (MUEs) for a set of 10 phosphine dissociation reactions in the range 13−27 kcal/mol, the recently developed DFT-based methods for inclusion of attractive noncovalent interactions and dispersion (the DFT-D and M06 functionals) dramatically improve upon the situation. The best agreement with experiment is observed for BLYP-D (MUE = 2.2 kcal/mol), and with the exception for M06-2X, all these methods provide MUEs well below 5 kcal/mol, which should be sufficient for a broad range of applications. The improvements in predicted relative bond enthalpies are less convincing, however. In several cases the GGA and hybrid-GGA functionals are better at reproducing substitution effects than the DFT-D and M06 methods.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19736907</pmid><doi>10.1021/jp902940c</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2009-10, Vol.113 (43), p.11833-11844
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_734099295
source American Chemical Society
title Metal−Phosphine Bond Strengths of the Transition Metals: A Challenge for DFT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%88%92Phosphine%20Bond%20Strengths%20of%20the%20Transition%20Metals:%20A%20Challenge%20for%20DFT&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Minenkov,%20Yury&rft.date=2009-10-29&rft.volume=113&rft.issue=43&rft.spage=11833&rft.epage=11844&rft.pages=11833-11844&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp902940c&rft_dat=%3Cproquest_cross%3E734099295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734099295&rft_id=info:pmid/19736907&rfr_iscdi=true