efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria
The gene cluster pbrTRABCD from Cupriavidus metallidurans CH34 is thought to encode a unique, specific resistance mechanism for lead. However, the exact functions of these genes are unknown. In this study we examine the metal specificity and functions of pbrABCD by expressing these genes in differen...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2009-10, Vol.74 (2), p.384-394 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 394 |
---|---|
container_issue | 2 |
container_start_page | 384 |
container_title | Molecular microbiology |
container_volume | 74 |
creator | Hynninen, Anu Touzé, Thierry Pitkänen, Leena Mengin-Lecreulx, Dominique Virta, Marko |
description | The gene cluster pbrTRABCD from Cupriavidus metallidurans CH34 is thought to encode a unique, specific resistance mechanism for lead. However, the exact functions of these genes are unknown. In this study we examine the metal specificity and functions of pbrABCD by expressing these genes in different combinations and comparing their ability to restore Pb²⁺, Zn²⁺ and Cd²⁺ resistance in a metal-sensitive C. metallidurans strain DN440. We show that lead resistance in C. metallidurans is achieved through the cooperation of the Zn/Cd/Pb-translocating ATPase PbrA and the undecaprenyl pyrophosphate phosphatase PbrB. While PbrA non-specifically exported Pb²⁺, Zn²⁺ and Cd²⁺, a specific increase in lead resistance was observed when PbrA and PbrB were coexpressed. As a model of action for PbrA and PbrB we propose a mechanism where Pb²⁺ is exported from the cytoplasm by PbrA and then sequestered as a phosphate salt with the inorganic phosphate produced by PbrB. Similar operons containing genes for heavy metal translocating ATPases and phosphatases were found in several different bacterial species, suggesting that lead detoxification through active efflux and sequestration is a common lead-resistance mechanism. |
doi_str_mv | 10.1111/j.1365-2958.2009.06868.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734096586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879710061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5308-1fbf21665e963673a8fcb1b7635b57153063c1c7298b943e5b4f16b3f256148e3</originalsourceid><addsrcrecordid>eNqNkktv1DAUhS0EotPCX4AIqbBK8CN2nAWLtipQqRVIUImdde25ZjLKCzsR03-Pw4yKxKKqN7Z8v3N87WNCMkYLlsb7bcGEkjmvpS44pXVBlVa62D0hq_vCU7KitaS50PzHETmOcUspE1SJ5-SI1ZWohKxWxKH37bzLpgB9HIcwYci-2nCWQb_OIBs3Qxw3MEHEZfs8c8MwYoAJs6ZP9RZhnQeMTZygd5h16DbQN7FbyhZcsmvgBXnmoY348jCfkNuPl98vPufXXz5dXZxd504KqnPmredMKYm1EqoSoL2zzFZKSCsrJpfeHXMVr7WtS4HSlp4pKzyXipUaxQl5t_cdw_BrxjiZrokO2xZ6HOZoKlHSWkmtEvn2QZIzml6I0wS--Q_cDnPo0y0MS1a8kpolSO8hF4YYA3ozhqaDcGcYNUteZmuWWMwSi1nyMn_zMrskfXXwn22H63_CQ0AJOD0AEB20PsXkmnjPcU65UKpM3Ic997tp8e7RDZibm6tllfSv93oPg4GfIZ1x-40vH4apmkmtxR_qNbhb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196527581</pqid></control><display><type>article</type><title>efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria</title><source>Access via Wiley Online Library</source><source>MEDLINE</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Hynninen, Anu ; Touzé, Thierry ; Pitkänen, Leena ; Mengin-Lecreulx, Dominique ; Virta, Marko</creator><creatorcontrib>Hynninen, Anu ; Touzé, Thierry ; Pitkänen, Leena ; Mengin-Lecreulx, Dominique ; Virta, Marko</creatorcontrib><description>The gene cluster pbrTRABCD from Cupriavidus metallidurans CH34 is thought to encode a unique, specific resistance mechanism for lead. However, the exact functions of these genes are unknown. In this study we examine the metal specificity and functions of pbrABCD by expressing these genes in different combinations and comparing their ability to restore Pb²⁺, Zn²⁺ and Cd²⁺ resistance in a metal-sensitive C. metallidurans strain DN440. We show that lead resistance in C. metallidurans is achieved through the cooperation of the Zn/Cd/Pb-translocating ATPase PbrA and the undecaprenyl pyrophosphate phosphatase PbrB. While PbrA non-specifically exported Pb²⁺, Zn²⁺ and Cd²⁺, a specific increase in lead resistance was observed when PbrA and PbrB were coexpressed. As a model of action for PbrA and PbrB we propose a mechanism where Pb²⁺ is exported from the cytoplasm by PbrA and then sequestered as a phosphate salt with the inorganic phosphate produced by PbrB. Similar operons containing genes for heavy metal translocating ATPases and phosphatases were found in several different bacterial species, suggesting that lead detoxification through active efflux and sequestration is a common lead-resistance mechanism.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2009.06868.x</identifier><identifier>PMID: 19737357</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Adenosine triphosphatase ; Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - metabolism ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological and medical sciences ; Cupriavidus - drug effects ; Cupriavidus - enzymology ; Cupriavidus - genetics ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Bacterial ; Genes ; Genetic Complementation Test ; Lead ; Lead - pharmacology ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Microbiology ; Multigene Family ; Operon ; Pyrophosphatases - genetics ; Pyrophosphatases - metabolism ; Studies ; Substrate Specificity</subject><ispartof>Molecular microbiology, 2009-10, Vol.74 (2), p.384-394</ispartof><rights>2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Oct 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5308-1fbf21665e963673a8fcb1b7635b57153063c1c7298b943e5b4f16b3f256148e3</citedby><cites>FETCH-LOGICAL-c5308-1fbf21665e963673a8fcb1b7635b57153063c1c7298b943e5b4f16b3f256148e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2009.06868.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2009.06868.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,1435,27931,27932,45581,45582,46416,46840</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22023664$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19737357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hynninen, Anu</creatorcontrib><creatorcontrib>Touzé, Thierry</creatorcontrib><creatorcontrib>Pitkänen, Leena</creatorcontrib><creatorcontrib>Mengin-Lecreulx, Dominique</creatorcontrib><creatorcontrib>Virta, Marko</creatorcontrib><title>efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>The gene cluster pbrTRABCD from Cupriavidus metallidurans CH34 is thought to encode a unique, specific resistance mechanism for lead. However, the exact functions of these genes are unknown. In this study we examine the metal specificity and functions of pbrABCD by expressing these genes in different combinations and comparing their ability to restore Pb²⁺, Zn²⁺ and Cd²⁺ resistance in a metal-sensitive C. metallidurans strain DN440. We show that lead resistance in C. metallidurans is achieved through the cooperation of the Zn/Cd/Pb-translocating ATPase PbrA and the undecaprenyl pyrophosphate phosphatase PbrB. While PbrA non-specifically exported Pb²⁺, Zn²⁺ and Cd²⁺, a specific increase in lead resistance was observed when PbrA and PbrB were coexpressed. As a model of action for PbrA and PbrB we propose a mechanism where Pb²⁺ is exported from the cytoplasm by PbrA and then sequestered as a phosphate salt with the inorganic phosphate produced by PbrB. Similar operons containing genes for heavy metal translocating ATPases and phosphatases were found in several different bacterial species, suggesting that lead detoxification through active efflux and sequestration is a common lead-resistance mechanism.</description><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cupriavidus - drug effects</subject><subject>Cupriavidus - enzymology</subject><subject>Cupriavidus - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Genetic Complementation Test</subject><subject>Lead</subject><subject>Lead - pharmacology</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Microbiology</subject><subject>Multigene Family</subject><subject>Operon</subject><subject>Pyrophosphatases - genetics</subject><subject>Pyrophosphatases - metabolism</subject><subject>Studies</subject><subject>Substrate Specificity</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkktv1DAUhS0EotPCX4AIqbBK8CN2nAWLtipQqRVIUImdde25ZjLKCzsR03-Pw4yKxKKqN7Z8v3N87WNCMkYLlsb7bcGEkjmvpS44pXVBlVa62D0hq_vCU7KitaS50PzHETmOcUspE1SJ5-SI1ZWohKxWxKH37bzLpgB9HIcwYci-2nCWQb_OIBs3Qxw3MEHEZfs8c8MwYoAJs6ZP9RZhnQeMTZygd5h16DbQN7FbyhZcsmvgBXnmoY348jCfkNuPl98vPufXXz5dXZxd504KqnPmredMKYm1EqoSoL2zzFZKSCsrJpfeHXMVr7WtS4HSlp4pKzyXipUaxQl5t_cdw_BrxjiZrokO2xZ6HOZoKlHSWkmtEvn2QZIzml6I0wS--Q_cDnPo0y0MS1a8kpolSO8hF4YYA3ozhqaDcGcYNUteZmuWWMwSi1nyMn_zMrskfXXwn22H63_CQ0AJOD0AEB20PsXkmnjPcU65UKpM3Ic997tp8e7RDZibm6tllfSv93oPg4GfIZ1x-40vH4apmkmtxR_qNbhb</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Hynninen, Anu</creator><creator>Touzé, Thierry</creator><creator>Pitkänen, Leena</creator><creator>Mengin-Lecreulx, Dominique</creator><creator>Virta, Marko</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7T7</scope><scope>7X8</scope></search><sort><creationdate>200910</creationdate><title>efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria</title><author>Hynninen, Anu ; Touzé, Thierry ; Pitkänen, Leena ; Mengin-Lecreulx, Dominique ; Virta, Marko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5308-1fbf21665e963673a8fcb1b7635b57153063c1c7298b943e5b4f16b3f256148e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cupriavidus - drug effects</topic><topic>Cupriavidus - enzymology</topic><topic>Cupriavidus - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Genetic Complementation Test</topic><topic>Lead</topic><topic>Lead - pharmacology</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Microbiology</topic><topic>Multigene Family</topic><topic>Operon</topic><topic>Pyrophosphatases - genetics</topic><topic>Pyrophosphatases - metabolism</topic><topic>Studies</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hynninen, Anu</creatorcontrib><creatorcontrib>Touzé, Thierry</creatorcontrib><creatorcontrib>Pitkänen, Leena</creatorcontrib><creatorcontrib>Mengin-Lecreulx, Dominique</creatorcontrib><creatorcontrib>Virta, Marko</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hynninen, Anu</au><au>Touzé, Thierry</au><au>Pitkänen, Leena</au><au>Mengin-Lecreulx, Dominique</au><au>Virta, Marko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2009-10</date><risdate>2009</risdate><volume>74</volume><issue>2</issue><spage>384</spage><epage>394</epage><pages>384-394</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>The gene cluster pbrTRABCD from Cupriavidus metallidurans CH34 is thought to encode a unique, specific resistance mechanism for lead. However, the exact functions of these genes are unknown. In this study we examine the metal specificity and functions of pbrABCD by expressing these genes in different combinations and comparing their ability to restore Pb²⁺, Zn²⁺ and Cd²⁺ resistance in a metal-sensitive C. metallidurans strain DN440. We show that lead resistance in C. metallidurans is achieved through the cooperation of the Zn/Cd/Pb-translocating ATPase PbrA and the undecaprenyl pyrophosphate phosphatase PbrB. While PbrA non-specifically exported Pb²⁺, Zn²⁺ and Cd²⁺, a specific increase in lead resistance was observed when PbrA and PbrB were coexpressed. As a model of action for PbrA and PbrB we propose a mechanism where Pb²⁺ is exported from the cytoplasm by PbrA and then sequestered as a phosphate salt with the inorganic phosphate produced by PbrB. Similar operons containing genes for heavy metal translocating ATPases and phosphatases were found in several different bacterial species, suggesting that lead detoxification through active efflux and sequestration is a common lead-resistance mechanism.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>19737357</pmid><doi>10.1111/j.1365-2958.2009.06868.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2009-10, Vol.74 (2), p.384-394 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_734096586 |
source | Access via Wiley Online Library; MEDLINE; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Adenosine triphosphatase Adenosine Triphosphatases - genetics Adenosine Triphosphatases - metabolism Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Biological and medical sciences Cupriavidus - drug effects Cupriavidus - enzymology Cupriavidus - genetics Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation, Bacterial Genes Genetic Complementation Test Lead Lead - pharmacology Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Microbiology Multigene Family Operon Pyrophosphatases - genetics Pyrophosphatases - metabolism Studies Substrate Specificity |
title | efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T16%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=efflux%20transporter%20PbrA%20and%20a%20phosphatase%20PbrB%20cooperate%20in%20a%20lead-resistance%20mechanism%20in%20bacteria&rft.jtitle=Molecular%20microbiology&rft.au=Hynninen,%20Anu&rft.date=2009-10&rft.volume=74&rft.issue=2&rft.spage=384&rft.epage=394&rft.pages=384-394&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2009.06868.x&rft_dat=%3Cproquest_cross%3E1879710061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196527581&rft_id=info:pmid/19737357&rfr_iscdi=true |