efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria

The gene cluster pbrTRABCD from Cupriavidus metallidurans CH34 is thought to encode a unique, specific resistance mechanism for lead. However, the exact functions of these genes are unknown. In this study we examine the metal specificity and functions of pbrABCD by expressing these genes in differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2009-10, Vol.74 (2), p.384-394
Hauptverfasser: Hynninen, Anu, Touzé, Thierry, Pitkänen, Leena, Mengin-Lecreulx, Dominique, Virta, Marko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 394
container_issue 2
container_start_page 384
container_title Molecular microbiology
container_volume 74
creator Hynninen, Anu
Touzé, Thierry
Pitkänen, Leena
Mengin-Lecreulx, Dominique
Virta, Marko
description The gene cluster pbrTRABCD from Cupriavidus metallidurans CH34 is thought to encode a unique, specific resistance mechanism for lead. However, the exact functions of these genes are unknown. In this study we examine the metal specificity and functions of pbrABCD by expressing these genes in different combinations and comparing their ability to restore Pb²⁺, Zn²⁺ and Cd²⁺ resistance in a metal-sensitive C. metallidurans strain DN440. We show that lead resistance in C. metallidurans is achieved through the cooperation of the Zn/Cd/Pb-translocating ATPase PbrA and the undecaprenyl pyrophosphate phosphatase PbrB. While PbrA non-specifically exported Pb²⁺, Zn²⁺ and Cd²⁺, a specific increase in lead resistance was observed when PbrA and PbrB were coexpressed. As a model of action for PbrA and PbrB we propose a mechanism where Pb²⁺ is exported from the cytoplasm by PbrA and then sequestered as a phosphate salt with the inorganic phosphate produced by PbrB. Similar operons containing genes for heavy metal translocating ATPases and phosphatases were found in several different bacterial species, suggesting that lead detoxification through active efflux and sequestration is a common lead-resistance mechanism.
doi_str_mv 10.1111/j.1365-2958.2009.06868.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734096586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21097320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5308-1fbf21665e963673a8fcb1b7635b57153063c1c7298b943e5b4f16b3f256148e3</originalsourceid><addsrcrecordid>eNqNkktv1DAUhS0EotPCX4AIqbBK8CN2nAWLtipQqRVIUImdde25ZjLKCzsR03-Pw4yKxKKqN7Z8v3N87WNCMkYLlsb7bcGEkjmvpS44pXVBlVa62D0hq_vCU7KitaS50PzHETmOcUspE1SJ5-SI1ZWohKxWxKH37bzLpgB9HIcwYci-2nCWQb_OIBs3Qxw3MEHEZfs8c8MwYoAJs6ZP9RZhnQeMTZygd5h16DbQN7FbyhZcsmvgBXnmoY348jCfkNuPl98vPufXXz5dXZxd504KqnPmredMKYm1EqoSoL2zzFZKSCsrJpfeHXMVr7WtS4HSlp4pKzyXipUaxQl5t_cdw_BrxjiZrokO2xZ6HOZoKlHSWkmtEvn2QZIzml6I0wS--Q_cDnPo0y0MS1a8kpolSO8hF4YYA3ozhqaDcGcYNUteZmuWWMwSi1nyMn_zMrskfXXwn22H63_CQ0AJOD0AEB20PsXkmnjPcU65UKpM3Ic997tp8e7RDZibm6tllfSv93oPg4GfIZ1x-40vH4apmkmtxR_qNbhb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196527581</pqid></control><display><type>article</type><title>efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Hynninen, Anu ; Touzé, Thierry ; Pitkänen, Leena ; Mengin-Lecreulx, Dominique ; Virta, Marko</creator><creatorcontrib>Hynninen, Anu ; Touzé, Thierry ; Pitkänen, Leena ; Mengin-Lecreulx, Dominique ; Virta, Marko</creatorcontrib><description>The gene cluster pbrTRABCD from Cupriavidus metallidurans CH34 is thought to encode a unique, specific resistance mechanism for lead. However, the exact functions of these genes are unknown. In this study we examine the metal specificity and functions of pbrABCD by expressing these genes in different combinations and comparing their ability to restore Pb²⁺, Zn²⁺ and Cd²⁺ resistance in a metal-sensitive C. metallidurans strain DN440. We show that lead resistance in C. metallidurans is achieved through the cooperation of the Zn/Cd/Pb-translocating ATPase PbrA and the undecaprenyl pyrophosphate phosphatase PbrB. While PbrA non-specifically exported Pb²⁺, Zn²⁺ and Cd²⁺, a specific increase in lead resistance was observed when PbrA and PbrB were coexpressed. As a model of action for PbrA and PbrB we propose a mechanism where Pb²⁺ is exported from the cytoplasm by PbrA and then sequestered as a phosphate salt with the inorganic phosphate produced by PbrB. Similar operons containing genes for heavy metal translocating ATPases and phosphatases were found in several different bacterial species, suggesting that lead detoxification through active efflux and sequestration is a common lead-resistance mechanism.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2009.06868.x</identifier><identifier>PMID: 19737357</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Adenosine triphosphatase ; Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - metabolism ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological and medical sciences ; Cupriavidus - drug effects ; Cupriavidus - enzymology ; Cupriavidus - genetics ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Bacterial ; Genes ; Genetic Complementation Test ; Lead ; Lead - pharmacology ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Microbiology ; Multigene Family ; Operon ; Pyrophosphatases - genetics ; Pyrophosphatases - metabolism ; Studies ; Substrate Specificity</subject><ispartof>Molecular microbiology, 2009-10, Vol.74 (2), p.384-394</ispartof><rights>2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Oct 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5308-1fbf21665e963673a8fcb1b7635b57153063c1c7298b943e5b4f16b3f256148e3</citedby><cites>FETCH-LOGICAL-c5308-1fbf21665e963673a8fcb1b7635b57153063c1c7298b943e5b4f16b3f256148e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2009.06868.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2009.06868.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,27929,27930,45579,45580,46414,46838</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22023664$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19737357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hynninen, Anu</creatorcontrib><creatorcontrib>Touzé, Thierry</creatorcontrib><creatorcontrib>Pitkänen, Leena</creatorcontrib><creatorcontrib>Mengin-Lecreulx, Dominique</creatorcontrib><creatorcontrib>Virta, Marko</creatorcontrib><title>efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>The gene cluster pbrTRABCD from Cupriavidus metallidurans CH34 is thought to encode a unique, specific resistance mechanism for lead. However, the exact functions of these genes are unknown. In this study we examine the metal specificity and functions of pbrABCD by expressing these genes in different combinations and comparing their ability to restore Pb²⁺, Zn²⁺ and Cd²⁺ resistance in a metal-sensitive C. metallidurans strain DN440. We show that lead resistance in C. metallidurans is achieved through the cooperation of the Zn/Cd/Pb-translocating ATPase PbrA and the undecaprenyl pyrophosphate phosphatase PbrB. While PbrA non-specifically exported Pb²⁺, Zn²⁺ and Cd²⁺, a specific increase in lead resistance was observed when PbrA and PbrB were coexpressed. As a model of action for PbrA and PbrB we propose a mechanism where Pb²⁺ is exported from the cytoplasm by PbrA and then sequestered as a phosphate salt with the inorganic phosphate produced by PbrB. Similar operons containing genes for heavy metal translocating ATPases and phosphatases were found in several different bacterial species, suggesting that lead detoxification through active efflux and sequestration is a common lead-resistance mechanism.</description><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cupriavidus - drug effects</subject><subject>Cupriavidus - enzymology</subject><subject>Cupriavidus - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Genetic Complementation Test</subject><subject>Lead</subject><subject>Lead - pharmacology</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Microbiology</subject><subject>Multigene Family</subject><subject>Operon</subject><subject>Pyrophosphatases - genetics</subject><subject>Pyrophosphatases - metabolism</subject><subject>Studies</subject><subject>Substrate Specificity</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkktv1DAUhS0EotPCX4AIqbBK8CN2nAWLtipQqRVIUImdde25ZjLKCzsR03-Pw4yKxKKqN7Z8v3N87WNCMkYLlsb7bcGEkjmvpS44pXVBlVa62D0hq_vCU7KitaS50PzHETmOcUspE1SJ5-SI1ZWohKxWxKH37bzLpgB9HIcwYci-2nCWQb_OIBs3Qxw3MEHEZfs8c8MwYoAJs6ZP9RZhnQeMTZygd5h16DbQN7FbyhZcsmvgBXnmoY348jCfkNuPl98vPufXXz5dXZxd504KqnPmredMKYm1EqoSoL2zzFZKSCsrJpfeHXMVr7WtS4HSlp4pKzyXipUaxQl5t_cdw_BrxjiZrokO2xZ6HOZoKlHSWkmtEvn2QZIzml6I0wS--Q_cDnPo0y0MS1a8kpolSO8hF4YYA3ozhqaDcGcYNUteZmuWWMwSi1nyMn_zMrskfXXwn22H63_CQ0AJOD0AEB20PsXkmnjPcU65UKpM3Ic997tp8e7RDZibm6tllfSv93oPg4GfIZ1x-40vH4apmkmtxR_qNbhb</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Hynninen, Anu</creator><creator>Touzé, Thierry</creator><creator>Pitkänen, Leena</creator><creator>Mengin-Lecreulx, Dominique</creator><creator>Virta, Marko</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7T7</scope><scope>7X8</scope></search><sort><creationdate>200910</creationdate><title>efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria</title><author>Hynninen, Anu ; Touzé, Thierry ; Pitkänen, Leena ; Mengin-Lecreulx, Dominique ; Virta, Marko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5308-1fbf21665e963673a8fcb1b7635b57153063c1c7298b943e5b4f16b3f256148e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cupriavidus - drug effects</topic><topic>Cupriavidus - enzymology</topic><topic>Cupriavidus - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Genetic Complementation Test</topic><topic>Lead</topic><topic>Lead - pharmacology</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Microbiology</topic><topic>Multigene Family</topic><topic>Operon</topic><topic>Pyrophosphatases - genetics</topic><topic>Pyrophosphatases - metabolism</topic><topic>Studies</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hynninen, Anu</creatorcontrib><creatorcontrib>Touzé, Thierry</creatorcontrib><creatorcontrib>Pitkänen, Leena</creatorcontrib><creatorcontrib>Mengin-Lecreulx, Dominique</creatorcontrib><creatorcontrib>Virta, Marko</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hynninen, Anu</au><au>Touzé, Thierry</au><au>Pitkänen, Leena</au><au>Mengin-Lecreulx, Dominique</au><au>Virta, Marko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2009-10</date><risdate>2009</risdate><volume>74</volume><issue>2</issue><spage>384</spage><epage>394</epage><pages>384-394</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>The gene cluster pbrTRABCD from Cupriavidus metallidurans CH34 is thought to encode a unique, specific resistance mechanism for lead. However, the exact functions of these genes are unknown. In this study we examine the metal specificity and functions of pbrABCD by expressing these genes in different combinations and comparing their ability to restore Pb²⁺, Zn²⁺ and Cd²⁺ resistance in a metal-sensitive C. metallidurans strain DN440. We show that lead resistance in C. metallidurans is achieved through the cooperation of the Zn/Cd/Pb-translocating ATPase PbrA and the undecaprenyl pyrophosphate phosphatase PbrB. While PbrA non-specifically exported Pb²⁺, Zn²⁺ and Cd²⁺, a specific increase in lead resistance was observed when PbrA and PbrB were coexpressed. As a model of action for PbrA and PbrB we propose a mechanism where Pb²⁺ is exported from the cytoplasm by PbrA and then sequestered as a phosphate salt with the inorganic phosphate produced by PbrB. Similar operons containing genes for heavy metal translocating ATPases and phosphatases were found in several different bacterial species, suggesting that lead detoxification through active efflux and sequestration is a common lead-resistance mechanism.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>19737357</pmid><doi>10.1111/j.1365-2958.2009.06868.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2009-10, Vol.74 (2), p.384-394
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_734096586
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry
subjects Adenosine triphosphatase
Adenosine Triphosphatases - genetics
Adenosine Triphosphatases - metabolism
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological and medical sciences
Cupriavidus - drug effects
Cupriavidus - enzymology
Cupriavidus - genetics
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation, Bacterial
Genes
Genetic Complementation Test
Lead
Lead - pharmacology
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Microbiology
Multigene Family
Operon
Pyrophosphatases - genetics
Pyrophosphatases - metabolism
Studies
Substrate Specificity
title efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-10T23%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=efflux%20transporter%20PbrA%20and%20a%20phosphatase%20PbrB%20cooperate%20in%20a%20lead-resistance%20mechanism%20in%20bacteria&rft.jtitle=Molecular%20microbiology&rft.au=Hynninen,%20Anu&rft.date=2009-10&rft.volume=74&rft.issue=2&rft.spage=384&rft.epage=394&rft.pages=384-394&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2009.06868.x&rft_dat=%3Cproquest_cross%3E21097320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196527581&rft_id=info:pmid/19737357&rfr_iscdi=true