Quantitative imaging of spontaneous neuromagnetic activity for assessing cerebral ischemia using sLORETA-qm

To image cerebral neural activity in ischemic areas, we proposed a novel technique to analyze spontaneous neuromagnetic fields based on standardized low-resolution brain electromagnetic tomography modified for a quantifiable method (sLORETA-qm). Using a 160-channel whole-head-type magnetoencephalogr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2010-01, Vol.49 (1), p.488-497
Hauptverfasser: Sakamoto, Shinichi, Tanaka, Hiroaki, Tsuyuguchi, Naohiro, Terakawa, Yuzo, Ohata, Kenji, Inoue, Yuichi, Miki, Yukio, Hara, Mitsuhiro, Takahashi, Yoshinobu, Nitta, Kazumi, Sawa, Hiroki, Satone, Akira, Ide, Wataru, Hashimoto, Ikuo, Kamada, Hajime
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 497
container_issue 1
container_start_page 488
container_title NeuroImage (Orlando, Fla.)
container_volume 49
creator Sakamoto, Shinichi
Tanaka, Hiroaki
Tsuyuguchi, Naohiro
Terakawa, Yuzo
Ohata, Kenji
Inoue, Yuichi
Miki, Yukio
Hara, Mitsuhiro
Takahashi, Yoshinobu
Nitta, Kazumi
Sawa, Hiroki
Satone, Akira
Ide, Wataru
Hashimoto, Ikuo
Kamada, Hajime
description To image cerebral neural activity in ischemic areas, we proposed a novel technique to analyze spontaneous neuromagnetic fields based on standardized low-resolution brain electromagnetic tomography modified for a quantifiable method (sLORETA-qm). Using a 160-channel whole-head-type magnetoencephalographic system, cerebral magnetic fields were obtained pre- and postoperatively from 5 patients with unilateral internal carotid artery occlusive disease and 16 age-matched healthy volunteers. For quantitative imaging, voxel-based time-averaged intensities of slow waves in 4 frequency bands (0.3–2 Hz, 2–4 Hz, 4–6 Hz and 6–8 Hz) were obtained by the proposed technique based on sLORETA-qm. Positron emission tomography with 15O gas inhalation (15O-PET) was also performed in these patients to evaluate cerebral blood flow and metabolism. In all 5 patients, slow waves in every frequency band were distributed in the area of cerebrovascular insufficiency, as confirmed by 15O-PET preoperatively. In 4 patients, slow-wave intensities in theta bands (4–6 Hz, 6–8 Hz) decreased postoperatively along with improvements in cerebral blood flow and metabolism, whereas delta bands (0.3–2 Hz, 2–4 Hz) showed no significant differences between pre- and postoperatively. One patient with deterioration of cerebral infarction after surgery showed marked increases in slow-wave intensities in delta bands (0.3–2 Hz, 2–4 Hz) postoperatively, with distribution close to the infarct region. The proposed quantitative imaging of spontaneous neuromagnetic fields enabled clear visualization and alternations of cerebral neural conditions in the ischemic area. This technique may offer a novel, non-invasive method for identifying cerebral ischemia, although further studies in a larger number of patients are warranted.
doi_str_mv 10.1016/j.neuroimage.2009.07.039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734093734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811909008118</els_id><sourcerecordid>3244775541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-148e5c546c0e19df4817658632fabc5c712ede29f251ac92644bf0994bd77c733</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpadK0f6EICs3JrkayLOuYhvQDFkJLehayPE61XVsbSQ7k31fOLgR6aC6SGD0z78y8hFBgNTBoP23rGZcY_GRvseaM6Zqpmgn9gpwC07LSUvGX61uKqgPQJ-RNSltWQGi61-QEdCu4aNgp-fNjsXP22WZ_j3Qt6OdbGkaa9mHOdsawJPooVr5mzN5R6wrr8wMdQ6Q2JUxpzXEYsY92R31yv3Hyli6P8bS5_nl1c1HdTW_Jq9HuEr473mfk15erm8tv1eb66_fLi03lJNe5Ki2idLJpHUPQw9h0oFrZlY5H2zvpFHAckOuRS7BO87Zp-pFp3fSDUk4JcUbOD3X3MdwtmLKZSk-42x3GMapMrkU5C_nxv6SQrOHQsWdBDpwLCVDAD_-A27DEuYxrQLK2g1YzXqjuQLkYUoo4mn0su48PBphZHTZb8-SwWR02TJnicEl9fxRY-gmHp8SjpQX4fACwrPjeYzTJeZwdDj6iy2YI_nmVv6YVvOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506816902</pqid></control><display><type>article</type><title>Quantitative imaging of spontaneous neuromagnetic activity for assessing cerebral ischemia using sLORETA-qm</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Sakamoto, Shinichi ; Tanaka, Hiroaki ; Tsuyuguchi, Naohiro ; Terakawa, Yuzo ; Ohata, Kenji ; Inoue, Yuichi ; Miki, Yukio ; Hara, Mitsuhiro ; Takahashi, Yoshinobu ; Nitta, Kazumi ; Sawa, Hiroki ; Satone, Akira ; Ide, Wataru ; Hashimoto, Ikuo ; Kamada, Hajime</creator><creatorcontrib>Sakamoto, Shinichi ; Tanaka, Hiroaki ; Tsuyuguchi, Naohiro ; Terakawa, Yuzo ; Ohata, Kenji ; Inoue, Yuichi ; Miki, Yukio ; Hara, Mitsuhiro ; Takahashi, Yoshinobu ; Nitta, Kazumi ; Sawa, Hiroki ; Satone, Akira ; Ide, Wataru ; Hashimoto, Ikuo ; Kamada, Hajime</creatorcontrib><description>To image cerebral neural activity in ischemic areas, we proposed a novel technique to analyze spontaneous neuromagnetic fields based on standardized low-resolution brain electromagnetic tomography modified for a quantifiable method (sLORETA-qm). Using a 160-channel whole-head-type magnetoencephalographic system, cerebral magnetic fields were obtained pre- and postoperatively from 5 patients with unilateral internal carotid artery occlusive disease and 16 age-matched healthy volunteers. For quantitative imaging, voxel-based time-averaged intensities of slow waves in 4 frequency bands (0.3–2 Hz, 2–4 Hz, 4–6 Hz and 6–8 Hz) were obtained by the proposed technique based on sLORETA-qm. Positron emission tomography with 15O gas inhalation (15O-PET) was also performed in these patients to evaluate cerebral blood flow and metabolism. In all 5 patients, slow waves in every frequency band were distributed in the area of cerebrovascular insufficiency, as confirmed by 15O-PET preoperatively. In 4 patients, slow-wave intensities in theta bands (4–6 Hz, 6–8 Hz) decreased postoperatively along with improvements in cerebral blood flow and metabolism, whereas delta bands (0.3–2 Hz, 2–4 Hz) showed no significant differences between pre- and postoperatively. One patient with deterioration of cerebral infarction after surgery showed marked increases in slow-wave intensities in delta bands (0.3–2 Hz, 2–4 Hz) postoperatively, with distribution close to the infarct region. The proposed quantitative imaging of spontaneous neuromagnetic fields enabled clear visualization and alternations of cerebral neural conditions in the ischemic area. This technique may offer a novel, non-invasive method for identifying cerebral ischemia, although further studies in a larger number of patients are warranted.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2009.07.039</identifier><identifier>PMID: 19632340</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Age ; Aged ; Brain ; Brain - diagnostic imaging ; Brain - pathology ; Brain Ischemia - diagnostic imaging ; Brain Ischemia - pathology ; Cerebral Cortex - pathology ; Cerebral Cortex - physiopathology ; Cerebral Infarction - diagnostic imaging ; Cerebral Infarction - pathology ; Cerebral ischemia ; Dysarthria - pathology ; Electroencephalography ; Humans ; Image Processing, Computer-Assisted - methods ; Ischemia ; Magnetic Resonance Imaging - methods ; Magnetoencephalography ; Male ; Medical imaging ; Methods ; Middle Aged ; NMR ; Nuclear magnetic resonance ; Paresis - pathology ; Patients ; Positron emission tomography ; sLORETA-qm ; Values ; Veins &amp; arteries</subject><ispartof>NeuroImage (Orlando, Fla.), 2010-01, Vol.49 (1), p.488-497</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Jan 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-148e5c546c0e19df4817658632fabc5c712ede29f251ac92644bf0994bd77c733</citedby><cites>FETCH-LOGICAL-c529t-148e5c546c0e19df4817658632fabc5c712ede29f251ac92644bf0994bd77c733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506816902?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19632340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakamoto, Shinichi</creatorcontrib><creatorcontrib>Tanaka, Hiroaki</creatorcontrib><creatorcontrib>Tsuyuguchi, Naohiro</creatorcontrib><creatorcontrib>Terakawa, Yuzo</creatorcontrib><creatorcontrib>Ohata, Kenji</creatorcontrib><creatorcontrib>Inoue, Yuichi</creatorcontrib><creatorcontrib>Miki, Yukio</creatorcontrib><creatorcontrib>Hara, Mitsuhiro</creatorcontrib><creatorcontrib>Takahashi, Yoshinobu</creatorcontrib><creatorcontrib>Nitta, Kazumi</creatorcontrib><creatorcontrib>Sawa, Hiroki</creatorcontrib><creatorcontrib>Satone, Akira</creatorcontrib><creatorcontrib>Ide, Wataru</creatorcontrib><creatorcontrib>Hashimoto, Ikuo</creatorcontrib><creatorcontrib>Kamada, Hajime</creatorcontrib><title>Quantitative imaging of spontaneous neuromagnetic activity for assessing cerebral ischemia using sLORETA-qm</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>To image cerebral neural activity in ischemic areas, we proposed a novel technique to analyze spontaneous neuromagnetic fields based on standardized low-resolution brain electromagnetic tomography modified for a quantifiable method (sLORETA-qm). Using a 160-channel whole-head-type magnetoencephalographic system, cerebral magnetic fields were obtained pre- and postoperatively from 5 patients with unilateral internal carotid artery occlusive disease and 16 age-matched healthy volunteers. For quantitative imaging, voxel-based time-averaged intensities of slow waves in 4 frequency bands (0.3–2 Hz, 2–4 Hz, 4–6 Hz and 6–8 Hz) were obtained by the proposed technique based on sLORETA-qm. Positron emission tomography with 15O gas inhalation (15O-PET) was also performed in these patients to evaluate cerebral blood flow and metabolism. In all 5 patients, slow waves in every frequency band were distributed in the area of cerebrovascular insufficiency, as confirmed by 15O-PET preoperatively. In 4 patients, slow-wave intensities in theta bands (4–6 Hz, 6–8 Hz) decreased postoperatively along with improvements in cerebral blood flow and metabolism, whereas delta bands (0.3–2 Hz, 2–4 Hz) showed no significant differences between pre- and postoperatively. One patient with deterioration of cerebral infarction after surgery showed marked increases in slow-wave intensities in delta bands (0.3–2 Hz, 2–4 Hz) postoperatively, with distribution close to the infarct region. The proposed quantitative imaging of spontaneous neuromagnetic fields enabled clear visualization and alternations of cerebral neural conditions in the ischemic area. This technique may offer a novel, non-invasive method for identifying cerebral ischemia, although further studies in a larger number of patients are warranted.</description><subject>Age</subject><subject>Aged</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - pathology</subject><subject>Brain Ischemia - diagnostic imaging</subject><subject>Brain Ischemia - pathology</subject><subject>Cerebral Cortex - pathology</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Cerebral Infarction - diagnostic imaging</subject><subject>Cerebral Infarction - pathology</subject><subject>Cerebral ischemia</subject><subject>Dysarthria - pathology</subject><subject>Electroencephalography</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Ischemia</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetoencephalography</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Paresis - pathology</subject><subject>Patients</subject><subject>Positron emission tomography</subject><subject>sLORETA-qm</subject><subject>Values</subject><subject>Veins &amp; arteries</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1r3DAQhkVpadK0f6EICs3JrkayLOuYhvQDFkJLehayPE61XVsbSQ7k31fOLgR6aC6SGD0z78y8hFBgNTBoP23rGZcY_GRvseaM6Zqpmgn9gpwC07LSUvGX61uKqgPQJ-RNSltWQGi61-QEdCu4aNgp-fNjsXP22WZ_j3Qt6OdbGkaa9mHOdsawJPooVr5mzN5R6wrr8wMdQ6Q2JUxpzXEYsY92R31yv3Hyli6P8bS5_nl1c1HdTW_Jq9HuEr473mfk15erm8tv1eb66_fLi03lJNe5Ki2idLJpHUPQw9h0oFrZlY5H2zvpFHAckOuRS7BO87Zp-pFp3fSDUk4JcUbOD3X3MdwtmLKZSk-42x3GMapMrkU5C_nxv6SQrOHQsWdBDpwLCVDAD_-A27DEuYxrQLK2g1YzXqjuQLkYUoo4mn0su48PBphZHTZb8-SwWR02TJnicEl9fxRY-gmHp8SjpQX4fACwrPjeYzTJeZwdDj6iy2YI_nmVv6YVvOs</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Sakamoto, Shinichi</creator><creator>Tanaka, Hiroaki</creator><creator>Tsuyuguchi, Naohiro</creator><creator>Terakawa, Yuzo</creator><creator>Ohata, Kenji</creator><creator>Inoue, Yuichi</creator><creator>Miki, Yukio</creator><creator>Hara, Mitsuhiro</creator><creator>Takahashi, Yoshinobu</creator><creator>Nitta, Kazumi</creator><creator>Sawa, Hiroki</creator><creator>Satone, Akira</creator><creator>Ide, Wataru</creator><creator>Hashimoto, Ikuo</creator><creator>Kamada, Hajime</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20100101</creationdate><title>Quantitative imaging of spontaneous neuromagnetic activity for assessing cerebral ischemia using sLORETA-qm</title><author>Sakamoto, Shinichi ; Tanaka, Hiroaki ; Tsuyuguchi, Naohiro ; Terakawa, Yuzo ; Ohata, Kenji ; Inoue, Yuichi ; Miki, Yukio ; Hara, Mitsuhiro ; Takahashi, Yoshinobu ; Nitta, Kazumi ; Sawa, Hiroki ; Satone, Akira ; Ide, Wataru ; Hashimoto, Ikuo ; Kamada, Hajime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-148e5c546c0e19df4817658632fabc5c712ede29f251ac92644bf0994bd77c733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Age</topic><topic>Aged</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - pathology</topic><topic>Brain Ischemia - diagnostic imaging</topic><topic>Brain Ischemia - pathology</topic><topic>Cerebral Cortex - pathology</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Cerebral Infarction - diagnostic imaging</topic><topic>Cerebral Infarction - pathology</topic><topic>Cerebral ischemia</topic><topic>Dysarthria - pathology</topic><topic>Electroencephalography</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Ischemia</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetoencephalography</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Paresis - pathology</topic><topic>Patients</topic><topic>Positron emission tomography</topic><topic>sLORETA-qm</topic><topic>Values</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakamoto, Shinichi</creatorcontrib><creatorcontrib>Tanaka, Hiroaki</creatorcontrib><creatorcontrib>Tsuyuguchi, Naohiro</creatorcontrib><creatorcontrib>Terakawa, Yuzo</creatorcontrib><creatorcontrib>Ohata, Kenji</creatorcontrib><creatorcontrib>Inoue, Yuichi</creatorcontrib><creatorcontrib>Miki, Yukio</creatorcontrib><creatorcontrib>Hara, Mitsuhiro</creatorcontrib><creatorcontrib>Takahashi, Yoshinobu</creatorcontrib><creatorcontrib>Nitta, Kazumi</creatorcontrib><creatorcontrib>Sawa, Hiroki</creatorcontrib><creatorcontrib>Satone, Akira</creatorcontrib><creatorcontrib>Ide, Wataru</creatorcontrib><creatorcontrib>Hashimoto, Ikuo</creatorcontrib><creatorcontrib>Kamada, Hajime</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakamoto, Shinichi</au><au>Tanaka, Hiroaki</au><au>Tsuyuguchi, Naohiro</au><au>Terakawa, Yuzo</au><au>Ohata, Kenji</au><au>Inoue, Yuichi</au><au>Miki, Yukio</au><au>Hara, Mitsuhiro</au><au>Takahashi, Yoshinobu</au><au>Nitta, Kazumi</au><au>Sawa, Hiroki</au><au>Satone, Akira</au><au>Ide, Wataru</au><au>Hashimoto, Ikuo</au><au>Kamada, Hajime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative imaging of spontaneous neuromagnetic activity for assessing cerebral ischemia using sLORETA-qm</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>49</volume><issue>1</issue><spage>488</spage><epage>497</epage><pages>488-497</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>To image cerebral neural activity in ischemic areas, we proposed a novel technique to analyze spontaneous neuromagnetic fields based on standardized low-resolution brain electromagnetic tomography modified for a quantifiable method (sLORETA-qm). Using a 160-channel whole-head-type magnetoencephalographic system, cerebral magnetic fields were obtained pre- and postoperatively from 5 patients with unilateral internal carotid artery occlusive disease and 16 age-matched healthy volunteers. For quantitative imaging, voxel-based time-averaged intensities of slow waves in 4 frequency bands (0.3–2 Hz, 2–4 Hz, 4–6 Hz and 6–8 Hz) were obtained by the proposed technique based on sLORETA-qm. Positron emission tomography with 15O gas inhalation (15O-PET) was also performed in these patients to evaluate cerebral blood flow and metabolism. In all 5 patients, slow waves in every frequency band were distributed in the area of cerebrovascular insufficiency, as confirmed by 15O-PET preoperatively. In 4 patients, slow-wave intensities in theta bands (4–6 Hz, 6–8 Hz) decreased postoperatively along with improvements in cerebral blood flow and metabolism, whereas delta bands (0.3–2 Hz, 2–4 Hz) showed no significant differences between pre- and postoperatively. One patient with deterioration of cerebral infarction after surgery showed marked increases in slow-wave intensities in delta bands (0.3–2 Hz, 2–4 Hz) postoperatively, with distribution close to the infarct region. The proposed quantitative imaging of spontaneous neuromagnetic fields enabled clear visualization and alternations of cerebral neural conditions in the ischemic area. This technique may offer a novel, non-invasive method for identifying cerebral ischemia, although further studies in a larger number of patients are warranted.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19632340</pmid><doi>10.1016/j.neuroimage.2009.07.039</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2010-01, Vol.49 (1), p.488-497
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_734093734
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Age
Aged
Brain
Brain - diagnostic imaging
Brain - pathology
Brain Ischemia - diagnostic imaging
Brain Ischemia - pathology
Cerebral Cortex - pathology
Cerebral Cortex - physiopathology
Cerebral Infarction - diagnostic imaging
Cerebral Infarction - pathology
Cerebral ischemia
Dysarthria - pathology
Electroencephalography
Humans
Image Processing, Computer-Assisted - methods
Ischemia
Magnetic Resonance Imaging - methods
Magnetoencephalography
Male
Medical imaging
Methods
Middle Aged
NMR
Nuclear magnetic resonance
Paresis - pathology
Patients
Positron emission tomography
sLORETA-qm
Values
Veins & arteries
title Quantitative imaging of spontaneous neuromagnetic activity for assessing cerebral ischemia using sLORETA-qm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20imaging%20of%20spontaneous%20neuromagnetic%20activity%20for%20assessing%20cerebral%20ischemia%20using%20sLORETA-qm&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Sakamoto,%20Shinichi&rft.date=2010-01-01&rft.volume=49&rft.issue=1&rft.spage=488&rft.epage=497&rft.pages=488-497&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2009.07.039&rft_dat=%3Cproquest_cross%3E3244775541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506816902&rft_id=info:pmid/19632340&rft_els_id=S1053811909008118&rfr_iscdi=true